Abstract: The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise. Gene editing holds tremendous potential for further improvements of T cell therapy. Here we review the applications of gene editing i...
Abstract: APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) are a family of cytidine deaminases that prefer single-stranded nucleic acids as substrates. Besides their physiological functions, APOBEC family members have been found to cause hypermutations of cancer genomes, which could ...
Abstract: Reverse genetic screens are invaluable for uncovering gene functions, but are traditionally hampered by some technical limitations. Over the past few years, since the advent of the revolutionary CRISPR/Cas9 technology, its power in genome editing has been harnessed to overcome the traditional limita...
Abstract: The RNA-guided CRISPR/Cas9 system has been shown to be a powerful tool for genome editing in various organisms. A comprehensive toolbox for multiplex genome editing has been developed for the silkworm, Bombyx mori, a lepidopteran model insect of economic importance. However, as previous methods main...