5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 9
Sep.  2017
Turn off MathJax
Article Contents

APOBEC: From mutator to editor

doi: 10.1016/j.jgg.2017.04.009
More Information
  • APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) are a family of cytidine deaminases that prefer single-stranded nucleic acids as substrates. Besides their physiological functions, APOBEC family members have been found to cause hypermutations of cancer genomes, which could be correlated with cancer development and poor prognosis. Recently, APOBEC family members have been combined with the versatile CRISPR/Cas9 system to perform targeted base editing or induce hypermutagenesis. This combination improved the CRISPR/Cas9-mediated gene editing at single-base precision, greatly enhancing its usefulness. Here, we review the physiological functions and structural characteristics of APOBEC family members and their roles as endogenous mutators that contribute to hypermutations during carcinogenesis. We also review the various iterations of the APOBEC-CRISPR/Cas9 gene-editing tools, pointing out their features and limitations as well as the possibilities for future developments.
  • loading
  • [1]
    Ahasan, M.M., Wakae, K., Wang, Z. et al. APOBEC3A and 3C decrease human papillomavirus 16 pseudovirion infectivity Biochem. Biophys. Res. Commun., 457 (2015),pp. 295-299
    [2]
    Alexandrov, L.B., Ju, Y.S., Haase, K. et al. Mutational signatures associated with tobacco smoking in human cancer Science, 354 (2016),pp. 618-622
    [3]
    Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C. et al. Signatures of mutational processes in human cancer Nature, 500 (2013),pp. 415-421
    [4]
    Balakrishnan, L., Bambara, R.A. Okazaki fragment metabolism Cold Spring Harb. Perspect. Biol., 5 (2013)
    [5]
    Barnes, D.E., Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells Annu. Rev. Genet., 38 (2004),pp. 445-476
    [6]
    Benayoun, B.A., Pollina, E.A., Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability Nat. Rev. Mol. Cell Biol., 16 (2015),pp. 593-610
    [7]
    Bishop, K.N., Holmes, R.K., Sheehy, A.M. et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins Curr. Biol., 14 (2004),pp. 1392-1396
    [8]
    Blanc, V., Kennedy, S., Davidson, N.O. A novel nuclear localization signal in the auxiliary domain of apobec-1 complementation factor regulates nucleocytoplasmic import and shuttling J. Biol. Chem., 278 (2003),pp. 41198-41204
    [9]
    Bogerd, H.P., Doehle, B.P., Wiegand, H.L. et al. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 3770-3774
    [10]
    Bohn, M.F., Shandilya, S.M., Albin, J.S. et al. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain Structure, 21 (2013),pp. 1042-1050
    [11]
    Bohn, M.F., Shandilya, S.M., Silvas, T.V. et al. The ssDNA mutator APOBEC3A is regulated by cooperative dimerization Structure, 23 (2015),pp. 903-911
    [12]
    Bransteitter, R., Pham, P., Scharff, M.D. et al. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 4102-4107
    [13]
    Burns, M.B., Lackey, L., Carpenter, M.A. et al. APOBEC3B is an enzymatic source of mutation in breast cancer Nature, 494 (2013),pp. 366-370
    [14]
    Burns, M.B., Temiz, N.A., Harris, R.S. Evidence for APOBEC3B mutagenesis in multiple human cancers Nat. Genet., 45 (2013),pp. 977-983
    [15]
    Byeon, I.J., Ahn, J., Mitra, M. et al. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity Nat. Commun., 4 (2013),p. 1890
    [16]
    Byeon, I.J., Byeon, C.H., Wu, T. et al. Nuclear magnetic resonance structure of the APOBEC3B catalytic domain: structural basis for substrate binding and DNA deaminase activity Biochemistry, 55 (2016),pp. 2944-2959
    [17]
    Caglayan, M., Wilson, S.H. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair DNA Repair, 35 (2015),pp. 85-89
    [18]
    Caval, V., Suspene, R., Shapira, M. et al. Nat. Commun., 5 (2014),p. 5129
    [19]
    Ceccaldi, R., Rondinelli, B., D'Andrea, A.D. Repair pathway choices and consequences at the double-strand break Trends Cell Biol., 26 (2016),pp. 52-64
    [20]
    Cescon, D.W., Haibe-Kains, B., Mak, T.W. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 2841-2846
    [21]
    Chan, K., Roberts, S.A., Klimczak, L.J. et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers Nat. Genet., 47 (2015),pp. 1067-1072
    [22]
    Chan, K., Sterling, J.F., Roberts, S.A. et al. PLoS Genet., 8 (2012),p. e1003149
    [23]
    Chan, L., Chang, B.H., Nakamuta, M. et al. Apobec-1 and apolipoprotein B mRNA editing Biochim. Biophys. Acta, 1345 (1997),pp. 11-26
    [24]
    Chelico, L., Pham, P., Calabrese, P. et al. APOBEC3G DNA deaminase acts processively 3′→5′ on single-stranded DNA Nat. Struct. Mol. Biol., 13 (2006),pp. 392-399
    [25]
    Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
    [26]
    Chen, H., Lilley, C.E., Yu, Q. et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons Curr. Biol., 16 (2006),pp. 480-485
    [27]
    Chen, J., Furano, A.V. Breaking bad: the mutagenic effect of DNA repair DNA Repair, 32 (2015),pp. 43-51
    [28]
    Chen, J., Miller, B.F., Furano, A.V. Repair of naturally occurring mismatches can induce mutations in flanking DNA eLife, 3 (2014),p. e02001
    [29]
    Chen, K.M., Harjes, E., Gross, P.J. et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G Nature, 452 (2008),pp. 116-119
    [30]
    Chen, Q., Xiao, X., Wolfe, A. et al. J. Mol. Biol., 428 (2016),pp. 2661-2670
    [31]
    Chu, V.T., Weber, T., Wefers, B. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells Nat. Biotechnol., 33 (2015),pp. 543-548
    [32]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [33]
    Conticello, S.G., Harris, R.S., Neuberger, M.S. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G Curr. Biol., 13 (2003),pp. 2009-2013
    [34]
    Conticello, S.G., Thomas, C.J., Petersen-Mahrt, S.K. et al. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases Mol. Biol. Evol., 22 (2005),pp. 367-377
    [35]
    Cox, D.B., Platt, R.J., Zhang, F. Therapeutic genome editing: prospects and challenges Nat. Med., 21 (2015),pp. 121-131
    [36]
    Cyranoski, D. Chinese scientists to pioneer first human CRISPR trial Nature, 535 (2016),pp. 476-477
    [37]
    Cyranoski, D. CRISPR gene-editing tested in a person for the first time Nature, 539 (2016),p. 479
    [38]
    Dang, Y., Wang, X., Esselman, W.J. et al. Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family J. Virol., 80 (2006),pp. 10522-10533
    [39]
    Davidson, N.O., Anant, S., MacGinnitie, A.J. Apolipoprotein B messenger RNA editing: insights into the molecular regulation of post-transcriptional cytidine deamination Curr. Opin. Lipidol., 6 (1995),pp. 70-74
    [40]
    Doehle, B.P., Schafer, A., Cullen, B.R. Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif Virology, 339 (2005),pp. 281-288
    [41]
    Dutko, J.A., Schafer, A., Kenny, A.E. et al. Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases Curr. Biol., 15 (2005),pp. 661-666
    [42]
    Esnault, C., Heidmann, O., Delebecque, F. et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses Nature, 433 (2005),pp. 430-433
    [43]
    Etard, C., Roostalu, U., Strahle, U. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos J. Cell Biol., 189 (2010),pp. 527-539
    [44]
    Faltas, B.M., Prandi, D., Tagawa, S.T. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma Nat. Genet., 48 (2016),pp. 1490-1499
    [45]
    Furukawa, A., Nagata, T., Matsugami, A. et al. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G EMBO J., 28 (2009),pp. 440-451
    [46]
    Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. Genome-scale CRISPR-mediated control of gene repression and activation Cell, 159 (2014),pp. 647-661
    [47]
    Gooch, B.D., Cullen, B.R. Functional domain organization of human APOBEC3G Virology, 379 (2008),pp. 118-124
    [48]
    Greenman, C., Stephens, P., Smith, R. et al. Patterns of somatic mutation in human cancer genomes Nature, 446 (2007),pp. 153-158
    [49]
    Greider, C.W. Telomeres do D-loop-T-loop Cell, 97 (1999),pp. 419-422
    [50]
    Haradhvala, N.J., Polak, P., Stojanov, P. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair Cell, 164 (2016),pp. 538-549
    [51]
    Harjes, E., Gross, P.J., Chen, K.M. et al. An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model J. Mol. Biol., 389 (2009),pp. 819-832
    [52]
    Harris, R.S., Bishop, K.N., Sheehy, A.M. et al. DNA deamination mediates innate immunity to retroviral infection Cell, 113 (2003),pp. 803-809
    [53]
    Harris, R.S., Dudley, J.P. APOBECs and virus restriction Virology, 479–480 (2015),pp. 131-145
    [54]
    Harris, R.S., Liddament, M.T. Retroviral restriction by APOBEC proteins Nat. Rev. Immunol., 4 (2004),pp. 868-877
    [55]
    Harris, R.S., Petersen-Mahrt, S.K., Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators Mol. Cell, 10 (2002),pp. 1247-1253
    [56]
    Hasler, J., Rada, C., Neuberger, M.S. Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor 1alpha (eEF1A) Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 18366-18371
    [57]
    Henderson, S., Chakravarthy, A., Su, X. et al. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development Cell Rep., 7 (2014),pp. 1833-1841
    [58]
    Hess, G.T., Fresard, L., Han, K. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells Nat. Methods, 13 (2016),pp. 1036-1042
    [59]
    Holden, L.G., Prochnow, C., Chang, Y.P. et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications Nature, 456 (2008),pp. 121-124
    [60]
    Hoopes, J.I., Cortez, L.M., Mertz, T.M. et al. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication Cell Rep., 14 (2016),pp. 1273-1282
    [61]
    Hulme, A.E., Bogerd, H.P., Cullen, B.R. et al. Selective inhibition of Alu retrotransposition by APOBEC3G Gene, 390 (2007),pp. 199-205
    [62]
    Hultquist, J.F., Lengyel, J.A., Refsland, E.W. et al. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1 J. Virol., 85 (2011),pp. 11220-11234
    [63]
    Huthoff, H., Autore, F., Gallois-Montbrun, S. et al. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1 PLoS Pathog., 5 (2009),p. e1000330
    [64]
    Huthoff, H., Malim, M.H. Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation J. Virol., 81 (2007),pp. 3807-3815
    [65]
    Ito, S., Nagaoka, H., Shinkura, R. et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1 Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 1975-1980
    [66]
    Jarmuz, A., Chester, A., Bayliss, J. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22 Genomics, 79 (2002),pp. 285-296
    [67]
    Jiang, F., Taylor, D.W., Chen, J.S. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage Science, 351 (2016),pp. 867-871
    [68]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [69]
    Kanu, N., Cerone, M.A., Goh, G. et al. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer Genome Biol., 17 (2016),p. 185
    [70]
    Kazanov, M.D., Roberts, S.A., Polak, P. et al. APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions Cell Rep., 13 (2015),pp. 1103-1109
    [71]
    Kim, D., Lim, K., Kim, S.T. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases Nat. Biotechnol., 35 (2017),pp. 475-480
    [72]
    Kim, K., Ryu, S.M., Kim, S.T. et al. Highly efficient RNA-guided base editing in mouse embryos Nat. Biotechnol., 35 (2017),pp. 435-437
    [73]
    Kim, Y.B., Komor, A.C., Levy, J.M. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions Nat. Biotechnol., 35 (2017),pp. 371-376
    [74]
    Kinomoto, M., Kanno, T., Shimura, M. et al. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition Nucleic Acids Res., 35 (2007),pp. 2955-2964
    [75]
    Kinoshita, K., Honjo, T. Linking class-switch recombination with somatic hypermutation Nat. Rev. Mol. Cell Biol., 2 (2001),pp. 493-503
    [76]
    Kitamura, S., Ode, H., Nakashima, M. et al. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct. Mol. Biol., 19 (2012),pp. 1005-1010
    [77]
    Kock, J., Blum, H.E. Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H J. Gen. Virol., 89 (2008),pp. 1184-1191
    [78]
    Komor, A.C., Badran, A.H., Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes Cell, 168 (2017),pp. 20-36
    [79]
    Komor, A.C., Kim, Y.B., Packer, M.S. et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage Nature, 533 (2016),pp. 420-424
    [80]
    Konermann, S., Brigham, M.D., Trevino, A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature, 517 (2015),pp. 583-588
    [81]
    Kuscu, C., Parlak, M., Tufan, T. et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations Nat. Methods, 14 (2017),pp. 710-712
    [82]
    Landrum, M.J., Lee, J.M., Riley, G.R. et al. ClinVar: public archive of relationships among sequence variation and human phenotype Nucleic Acids Res., 42 (2014),pp. D980-D985
    [83]
    Lecossier, D., Bouchonnet, F., Clavel, F. et al. Hypermutation of HIV-1 DNA in the absence of the Vif protein Science, 300 (2003),p. 1112
    [84]
    Leonard, B., Hart, S.N., Burns, M.B. et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma Cancer Res., 73 (2013),pp. 7222-7231
    [85]
    Li, M., Shandilya, S.M., Carpenter, M.A. et al. First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G ACS Chem. Biol., 7 (2012),pp. 506-517
    [86]
    Liang, P., Sun, H., Sun, Y. et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes Protein Cell, 8 (2017),pp. 601-611
    [87]
    Liao, W., Hong, S.H., Chan, B.H. et al. APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family Biochem. Biophys. Res. Commun., 260 (1999),pp. 398-404
    [88]
    Liddament, M.T., Brown, W.L., Schumacher, A.J. et al. Curr. Biol., 14 (2004),pp. 1385-1391
    [89]
    Liu, X.S., Wu, H., Ji, X. et al. Editing DNA methylation in the mammalian genome Cell, 167 (2016),pp. 233-247
    [90]
    Long, J., Delahanty, R.J., Li, G. et al. J. Natl. Cancer Inst., 105 (2013),pp. 573-579
    [91]
    Lu, X., Zhang, T., Xu, Z. et al. Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA J. Biol. Chem., 290 (2015),pp. 4010-4021
    [92]
    Lu, Y., Zhu, J.K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system Mol. Plant, 10 (2017),pp. 523-525
    [93]
    Luo, K., Wang, T., Liu, B. et al. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation J. Virol., 81 (2007),pp. 7238-7248
    [94]
    Ma, H., Tu, L.C., Naseri, A. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow Nat. Biotechnol., 34 (2016),pp. 528-530
    [95]
    Ma, Y., Zhang, J., Yin, W. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells Nat. Methods, 13 (2016),pp. 1029-1035
    [96]
    Maciejowski, J., Li, Y., Bosco, N. et al. Chromothripsis and kataegis induced by telomere crisis Cell, 163 (2015),pp. 1641-1654
    [97]
    Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
    [98]
    Mali, P., Yang, L., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
    [99]
    Mangeat, B., Turelli, P., Caron, G. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts Nature, 424 (2003),pp. 99-103
    [100]
    Mariani, R., Chen, D., Schrofelbauer, B. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif Cell, 114 (2003),pp. 21-31
    [101]
    Marin, M., Golem, S., Rose, K.M. et al. Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism J. Virol., 82 (2008),pp. 987-998
    [102]
    Marino, D., Perkovic, M., Hain, A. et al. APOBEC4 enhances the replication of HIV-1 PLoS One, 11 (2016),p. e0155422
    [103]
    Maruyama, T., Dougan, S.K., Truttmann, M.C. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining Nat. Biotechnol., 33 (2015),pp. 538-542
    [104]
    Mbisa, J.L., Barr, R., Thomas, J.A. et al. Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration J. Virol., 81 (2007),pp. 7099-7110
    [105]
    Mehta, A., Kinter, M.T., Sherman, N.E. et al. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA Mol. Cell Biol., 20 (2000),pp. 1846-1854
    [106]
    Middlebrooks, C.D., Banday, A.R., Matsuda, K. et al. Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors Nat. Genet., 48 (2016),pp. 1330-1338
    [107]
    Mikl, M.C., Watt, I.N., Lu, M. et al. Mice deficient in APOBEC2 and APOBEC3 Mol. Cell Biol., 25 (2005),pp. 7270-7277
    [108]
    Minegishi, Y., Lavoie, A., Cunningham-Rundles, C. et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome Clin. Immunol., 97 (2000),pp. 203-210
    [109]
    Morganella, S., Alexandrov, L.B., Glodzik, D. et al. The topography of mutational processes in breast cancer genomes Nat. Commun., 7 (2016),p. 11383
    [110]
    Morita, S., Noguchi, H., Horii, T. et al. Nat. Biotechnol., 34 (2016),pp. 1060-1065
    [111]
    Mukhopadhyay, D., Anant, S., Lee, R.M. et al. C→U editing of neurofibromatosis 1 mRNA occurs in tumors that express both the type II transcript and apobec-1, the catalytic subunit of the apolipoprotein B mRNA-editing enzyme Am. J. Hum. Genet., 70 (2002),pp. 38-50
    [112]
    Muramatsu, M., Kinoshita, K., Fagarasan, S. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme Cell, 102 (2000),pp. 553-563
    [113]
    Muramatsu, M., Sankaranand, V.S., Anant, S. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells J. Biol. Chem., 274 (1999),pp. 18470-18476
    [114]
    Nakamura, H., Arai, Y., Totoki, Y. et al. Genomic spectra of biliary tract cancer Nat. Genet., 47 (2015),pp. 1003-1010
    [115]
    Nakashima, M., Ode, H., Kawamura, T. et al. Structural insights into HIV-1 Vif-APOBEC3F interaction J. Virol., 90 (2015),pp. 1034-1047
    [116]
    Narvaiza, I., Linfesty, D.C., Greener, B.N. et al. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase PLoS Pathog., 5 (2009),p. e1000439
    [117]
    Navarro, F., Bollman, B., Chen, H. et al. Complementary function of the two catalytic domains of APOBEC3G Virology, 333 (2005),pp. 374-386
    [118]
    Newman, E.N., Holmes, R.K., Craig, H.M. et al. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity Curr. Biol., 15 (2005),pp. 166-170
    [119]
    Nik-Zainal, S., Alexandrov, L.B., Wedge, D.C. et al. Mutational processes molding the genomes of 21 breast cancers Cell, 149 (2012),pp. 979-993
    [120]
    Nik-Zainal, S., Davies, H., Staaf, J. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences Nature, 534 (2016),pp. 47-54
    [121]
    Nik-Zainal, S., Wedge, D.C., Alexandrov, L.B. et al. Nat. Genet., 46 (2014),pp. 487-491
    [122]
    Nishida, K., Arazoe, T., Yachie, N. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems Science, 353 (2016)
    [123]
    Noguchi, C., Ishino, H., Tsuge, M. et al. G to A hypermutation of hepatitis B virus Hepatology, 41 (2005),pp. 626-633
    [124]
    Nordentoft, I., Lamy, P., Birkenkamp-Demtroder, K. et al. Mutational context and diverse clonal development in early and late bladder cancer Cell Rep., 7 (2014),pp. 1649-1663
    [125]
    O'Hare, T., Eide, C.A., Deininger, M.W. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia Blood, 110 (2007),pp. 2242-2249
    [126]
    Okuyama, S., Marusawa, H., Matsumoto, T. et al. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis Int. J. Cancer, 130 (2012),pp. 1294-1301
    [127]
    Orthwein, A., Patenaude, A.M., Affar el, B. et al. Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90 J. Exp. Med., 207 (2010),pp. 2751-2765
    [128]
    Paquet, D., Kwart, D., Chen, A. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 Nature, 533 (2016),pp. 125-129
    [129]
    Periyasamy, M., Patel, H., Lai, C.F. et al. APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer Cell Rep., 13 (2015),pp. 108-121
    [130]
    Pham, P., Bransteitter, R., Petruska, J. et al. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation Nature, 424 (2003),pp. 103-107
    [131]
    Pinder, J., Salsman, J., Dellaire, G. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing Nucleic Acids Res., 43 (2015),pp. 9379-9392
    [132]
    Pinto, Y., Gabay, O., Arbiza, L. et al. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity Genome Res., 26 (2016),pp. 579-587
    [133]
    Prochnow, C., Bransteitter, R., Klein, M.G. et al. The APOBEC-2 crystal structure and functional implications for the deaminase AID Nature, 445 (2007),pp. 447-451
    [134]
    Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [135]
    Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
    [136]
    Rathore, A., Carpenter, M.A., Demir, O. et al. The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution J. Mol. Biol., 425 (2013),pp. 4442-4454
    [137]
    Rees, H.A., Komor, A.C., Yeh, W.H. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery Nat. Commun., 8 (2017),p. 15790
    [138]
    Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
    [139]
    Revy, P., Muto, T., Levy, Y. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2) Cell, 102 (2000),pp. 565-575
    [140]
    Richardson, C.D., Ray, G.J., DeWitt, M.A. et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA Nat. Biotechnol., 34 (2016),pp. 339-344
    [141]
    Richardson, S.R., Narvaiza, I., Planegger, R.A. et al. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition eLife, 3 (2014),p. e02008
    [142]
    Robert, F., Barbeau, M., Ethier, S. et al. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing Genome Med., 7 (2015),p. 93
    [143]
    Roberts, S.A., Gordenin, D.A. Hypermutation in human cancer genomes: footprints and mechanisms Nat. Rev. Cancer, 14 (2014),pp. 786-800
    [144]
    Roberts, S.A., Lawrence, M.S., Klimczak, L.J. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers Nat. Genet., 45 (2013),pp. 970-976
    [145]
    Roberts, S.A., Sterling, J., Thompson, C. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions Mol. Cell, 46 (2012),pp. 424-435
    [146]
    Rogozin, I.B., Basu, M.K., Jordan, I.K. et al. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis Cell Cycle, 4 (2005),pp. 1281-1285
    [147]
    Rosenberg, B.R., Hamilton, C.E., Mwangi, M.M. et al. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs Nat. Struct. Mol. Biol., 18 (2011),pp. 230-236
    [148]
    Rosler, C., Kock, J., Kann, M. et al. APOBEC-mediated interference with hepadnavirus production Hepatology, 42 (2005),pp. 301-309
    [149]
    Russell, R.A., Smith, J., Barr, R. et al. Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif J. Virol., 83 (2009),pp. 1992-2003
    [150]
    Russell, R.A., Wiegand, H.L., Moore, M.D. et al. Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors J. Virol., 79 (2005),pp. 8724-8731
    [151]
    Salter, J.D., Bennett, R.P., Smith, H.C. The APOBEC protein family: united by structure, divergent in function Trends Biochem. Sci., 41 (2016),pp. 578-594
    [152]
    Salter, J.D., Morales, G.A., Smith, H.C. Structural insights for HIV-1 therapeutic strategies targeting Vif Trends Biochem. Sci., 39 (2014),pp. 373-380
    [153]
    Sasada, A., Takaori-Kondo, A., Shirakawa, K. et al. APOBEC3G targets human T-cell leukemia virus type 1 Retrovirology, 2 (2005),p. 32
    [154]
    Sato, Y., Probst, H.C., Tatsumi, R. et al. Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy J. Biol. Chem., 285 (2010),pp. 7111-7118
    [155]
    Schafer, A., Bogerd, H.P., Cullen, B.R. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor Virology, 328 (2004),pp. 163-168
    [156]
    Schrader, C.E., Guikema, J.E., Wu, X. et al. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch Philos. Trans. R. Soc. Lond B Biol. Sci., 364 (2009),pp. 645-652
    [157]
    Schrofelbauer, B., Chen, D., Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif) Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 3927-3932
    [158]
    Schumacher, A.J., Nissley, D.V., Harris, R.S. APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 9854-9859
    [159]
    Schumann, K., Lin, S., Boyer, E. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 10437-10442
    [160]
    Seplyarskiy, V.B., Soldatov, R.A., Popadin, K.Y. et al. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication Genome Res., 26 (2016),pp. 174-182
    [161]
    Shaban, N.M., Shi, K., Li, M. et al. 1.92 angstrom zinc-free APOBEC3F catalytic domain crystal structure J. Mol. Biol., 428 (2016),pp. 2307-2316
    [162]
    Shandilya, S.M., Nalam, M.N., Nalivaika, E.A. et al. Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces Structure, 18 (2010),pp. 28-38
    [163]
    Sheehy, A.M., Gaddis, N.C., Choi, J.D. et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein Nature, 418 (2002),pp. 646-650
    [164]
    Sheehy, A.M., Gaddis, N.C., Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif Nat. Med., 9 (2003),pp. 1404-1407
    [165]
    Shen, B., Zhang, W., Zhang, J. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects Nat. Methods, 11 (2014),pp. 399-402
    [166]
    Shi, K., Carpenter, M.A., Banerjee, S. et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B Nat. Struct. Mol. Biol., 24 (2017),pp. 131-139
    [167]
    Shi, K., Carpenter, M.A., Kurahashi, K. et al. Crystal structure of the DNA deaminase APOBEC3B catalytic domain J. Biol. Chem., 290 (2015),pp. 28120-28130
    [168]
    Shimatani, Z., Kashojiya, S., Takayama, M. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion Nat. Biotechnol., 35 (2017),pp. 441-443
    [169]
    Shindo, K., Takaori-Kondo, A., Kobayashi, M. et al. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity J. Biol. Chem., 278 (2003),pp. 44412-44416
    [170]
    Siu, K.K., Sultana, A., Azimi, F.C. et al. Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F Nat. Commun., 4 (2013),p. 2593
    [171]
    Skourti-Stathaki, K., Proudfoot, N.J. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression Genes Dev., 28 (2014),pp. 1384-1396
    [172]
    Smith, J.L., Pathak, V.K. Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif J. Virol., 84 (2010),pp. 12599-12608
    [173]
    Song, J., Yang, D., Xu, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency Nat. Commun., 7 (2016),p. 10548
    [174]
    Starrett, G.J., Luengas, E.M., McCann, J.L. et al. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis Nat. Commun., 7 (2016),p. 12918
    [175]
    Stenglein, M.D., Harris, R.S. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism J. Biol. Chem., 281 (2006),pp. 16837-16841
    [176]
    Stephens, P., Edkins, S., Davies, H. et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer Nat. Genet., 37 (2005),pp. 590-592
    [177]
    Stopak, K., de Noronha, C., Yonemoto, W. et al. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability Mol. Cell, 12 (2003),pp. 591-601
    [178]
    Suspene, R., Aynaud, M.M., Guetard, D. et al. Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 4858-4863
    [179]
    Suspene, R., Guetard, D., Henry, M. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 8321-8326
    [180]
    Taylor, B.J., Nik-Zainal, S., Wu, Y.L. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis eLife, 2 (2013),p. e00534
    [181]
    Taylor, B.J., Wu, Y.L., Rada, C. Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes eLife, 3 (2014),p. e03553
    [182]
    Teng, B., Burant, C.F., Davidson, N.O. Molecular cloning of an apolipoprotein B messenger RNA editing protein Science, 260 (1993),pp. 1816-1819
    [183]
    Tsai, S.Q., Wyvekens, N., Khayter, C. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing Nat. Biotechnol., 32 (2014),pp. 569-576
    [184]
    Turelli, P., Mangeat, B., Jost, S. et al. Inhibition of hepatitis B virus replication by APOBEC3G Science, 303 (2004),p. 1829
    [185]
    Vartanian, J.P., Guetard, D., Henry, M. et al. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions Science, 320 (2008),pp. 230-233
    [186]
    Verhalen, B., Starrett, G.J., Harris, R.S. et al. Functional upregulation of the DNA cytosine deaminase APOBEC3B by polyomaviruses J. Virol., 90 (2016),pp. 6379-6386
    [187]
    Vojta, A., Dobrinic, P., Tadic, V. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation Nucleic Acids Res., 44 (2016),pp. 5615-5628
    [188]
    Walker, B.A., Wardell, C.P., Murison, A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma Nat. Commun., 6 (2015),p. 6997
    [189]
    Walser, J.C., Furano, A.V. The mutational spectrum of non-CpG DNA varies with CpG content Genome Res., 20 (2010),pp. 875-882
    [190]
    Walser, J.C., Ponger, L., Furano, A.V. CpG dinucleotides and the mutation rate of non-CpG DNA Genome Res., 18 (2008),pp. 1403-1414
    [191]
    Wiegand, H.L., Cullen, B.R. Inhibition of alpharetrovirus replication by a range of human APOBEC3 proteins J. Virol., 81 (2007),pp. 13694-13699
    [192]
    Wiegand, H.L., Doehle, B.P., Bogerd, H.P. et al. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins EMBO J., 23 (2004),pp. 2451-2458
    [193]
    Wilson, S.H. The dark side of DNA repair eLife, 3 (2014),p. e03068
    [194]
    Xiao, X., Li, S.X., Yang, H. et al. Crystal structures of APOBEC3G N-domain alone and its complex with DNA Nat. Commun., 7 (2016),p. 12193
    [195]
    Xu, X., Tao, Y., Gao, X. et al. A CRISPR-based approach for targeted DNA demethylation Cell Discov., 2 (2016),p. 16009
    [196]
    Yang, Y., Yang, Y., Smith, H.C. Multiple protein domains determine the cell type-specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 13075-13080
    [197]
    Yu, C., Liu, Y., Ma, T. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells Cell Stem Cell, 16 (2015),pp. 142-147
    [198]
    Yu, Q., Chen, D., Konig, R. et al. APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication J. Biol. Chem., 279 (2004),pp. 53379-53386
    [199]
    Yu, Q., Konig, R., Pillai, S. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome Nat. Struct. Mol. Biol., 11 (2004),pp. 435-442
    [200]
    Yu, X., Yu, Y., Liu, B. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex Science, 302 (2003),pp. 1056-1060
    [201]
    Zalatan, J.G., Lee, M.E., Almeida, R. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds Cell, 160 (2015),pp. 339-350
    [202]
    Zhang, H., Yang, B., Pomerantz, R.J. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA Nature, 424 (2003),pp. 94-98
    [203]
    Zhang, Y., Qin, W., Lu, X. et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system Nat. Commun., 8 (2017),p. 118
    [204]
    Zheng, H., Dai, W., Cheung, A.K. et al. Whole-exome sequencing identifies multiple loss-of-function mutations of NF-kappaB pathway regulators in nasopharyngeal carcinoma Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 11283-11288
    [205]
    Zhou, Y., Zhu, S., Cai, C. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells Nature, 509 (2014),pp. 487-491
    [206]
    Zong, Y., Wang, Y., Li, C. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion Nat. Biotechnol., 35 (2017),pp. 438-440
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return