[1] |
Ablain, J., Durand, E.M., Yang, S. et al. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish Dev. Cell, 32 (2015),pp. 756-764
|
[2] |
Bai, M., Liang, D., Wang, Y. et al. Spermatogenic cell-specific gene mutation in mice via CRISPR-Cas9 J. Genet. Genomics, 43 (2016),pp. 289-296
|
[3] |
Barrangou, R., Birmingham, A., Wiemann, S. et al. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference Nucleic Acids Res., 43 (2015),pp. 3407-3419
|
[4] |
Capanni, C., Cenni, V., Mattioli, E. et al. Failure of lamin A/C to functionally assemble in R482L mutated familial partial lipodystrophy fibroblasts: altered intermolecular interaction with emerin and implications for gene transcription Exp. Cell Res., 291 (2003),pp. 122-134
|
[5] |
Cohen, M., Tzur, Y.B., Neufeld, E. et al. J. Struct. Biol., 140 (2002),pp. 232-240
|
[6] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[7] |
Corrigan-Curay, J., O'Reilly, M., Kohn, D.B. et al. Genome editing technologies: defining a path to clinic Mol. Ther., 23 (2015),pp. 796-806
|
[8] |
Courtney, D.G., Moore, J.E., Atkinson, S.D. et al. Gene Ther., 23 (2016),pp. 108-112
|
[9] |
Cox, D.B., Platt, R.J., Zhang, F. Therapeutic genome editing: prospects and challenges Nat. Med., 21 (2015),pp. 121-131
|
[10] |
Dahl, K.N., Ribeiro, A.J., Lammerding, J. Nuclear shape, mechanics, and mechanotransduction Circ. Res., 102 (2008),pp. 1307-1318
|
[11] |
Di Donato, V., De Santis, F., Auer, T.O. et al. 2C-Cas9: a versatile tool for clonal analysis of gene function Genome Res., 26 (2016),pp. 681-692
|
[12] |
Ding, Q., Strong, A., Patel, K.M. et al. Circ. Res., 115 (2014),pp. 488-492
|
[13] |
Edgar, B.A., Orr-Weaver, T.L. Endoreplication cell cycles: more for less Cell, 105 (2001),pp. 297-306
|
[14] |
Gage, L.P. J. Mol. Biol., 86 (1974),pp. 97-108
|
[15] |
Goldman, R.D., Shumaker, D.K., Erdos, M.R. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 8963-8968
|
[16] |
Horn, C., Wimmer, E.A. A versatile vector set for animal transgenesis Dev. Genes Evol., 210 (2000),pp. 630-637
|
[17] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[18] |
Hu, W., Kaminski, R., Yang, F. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 11461-11466
|
[19] |
Lammerding, J., Fong, L.G., Ji, J.Y. et al. Lamins A and C but not lamin B1 regulate nuclear mechanics J. Biol. Chem., 281 (2006),pp. 25768-25780
|
[20] |
Liu, J., Rolef Ben-Shahar, T., Riemer, D. et al. Mol. Biol. Cell, 11 (2000),pp. 3937-3947
|
[21] |
Liu, Y., Ma, S., Wang, X. et al. Insect Biochem. Mol. Biol., 49 (2014),pp. 35-42
|
[22] |
Ma, S., Chang, J., Wang, X. et al. Sci. Rep., 4 (2014),p. 4489
|
[23] |
Ma, S., Zhang, S., Wang, F. et al. Highly efficient and specific genome editing in silkworm using custom TALENs PLoS One, 7 (2012),p. e45035
|
[24] |
Ma, S.Y., Wang, X.G., Fei, J.T. et al. Genetic marking of sex using a W chromosome-linked transgene Insect Biochem. Mol. Biol., 43 (2013),pp. 1079-1086
|
[25] |
Maeder, M.L., Gersbach, C.A. Genome-editing technologies for gene and cell therapy Mol. Ther., 24 (2016),pp. 430-446
|
[26] |
Maeder, M.L., Linder, S.J., Cascio, V.M. et al. CRISPR RNA-guided activation of endogenous human genes Nat. Methods, 10 (2013),pp. 977-979
|
[27] |
Mali, P., Yang, L., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
|
[28] |
Mei, Y., Wang, Y., Chen, H. et al. Recent progress in CRISPR/Cas9 technology J. Genet. Genomics, 43 (2016),pp. 63-75
|
[29] |
Mezzadra, R., Hollenstein, A., Gomez-Eerland, R. et al. A traceless selection: counter-selection system that allows efficient generation of transposon and CRISPR-modified T-cell products Mol. Ther. Nucleic Acids, 5 (2016),p. e298
|
[30] |
Munkacsy, G., Sztupinszki, Z., Herman, P. et al. Validation of RNAi silencing wfficiency using gene array data shows 18.5% failure rate across 429 independent experiments Mol. Ther. Nucleic Acids, 5 (2016),p. e366
|
[31] |
Popp, M.W., Maquat, L.E. Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine Cell, 165 (2016),pp. 1319-1322
|
[32] |
Prokocimer, M., Davidovich, M., Nissim-Rafinia, M. et al. Nuclear lamins: key regulators of nuclear structure and activities J. Cell Mol. Med., 13 (2009),pp. 1059-1085
|
[33] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[34] |
Sabatelli, P., Lattanzi, G., Ognibene, A. et al. Nuclear alterations in autosomal-dominant Emery-Dreifuss muscular dystrophy Muscle Nerve, 24 (2001),pp. 826-829
|
[35] |
Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
|
[36] |
Suetsugu, Y., Futahashi, R., Kanamori, H. et al. (Bethesda), 3 (2013),pp. 1481-1492
|
[37] |
Sugimoto-Shirasu, K., Roberts, K. “Big it up”: endoreduplication and cell-size control in plants Curr. Opin. Plant Biol., 6 (2003),pp. 544-553
|
[38] |
Suzuki, Y., Gage, L.P., Brown, D.D. J. Mol. Biol., 70 (1972),pp. 637-649
|
[39] |
Takasu, Y., Kobayashi, I., Beumer, K. et al. Insect Biochem. Mol. Biol., 40 (2010),pp. 759-765
|
[40] |
Terenius, O., Papanicolaou, A., Garbutt, J.S. et al. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design J. Insect Physiol., 57 (2011),pp. 231-245
|
[41] |
Thomas, D.D., Donnelly, C.A., Wood, R.J. et al. Insect population control using a dominant, repressible, lethal genetic system Science, 287 (2000),pp. 2474-2476
|
[42] |
Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
|
[43] |
Wang, Y., Li, Z., Xu, J. et al. Cell Res., 23 (2013),pp. 1414-1416
|
[44] |
Wiesel, N., Mattout, A., Melcer, S. et al. Laminopathic mutations interfere with the assembly, localization, and dynamics of nuclear lamins Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 180-185
|
[45] |
Xie, K., Minkenberg, B., Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 3570-3575
|
[46] |
Xu, L., Park, K.H., Zhao, L. et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice Mol. Ther., 24 (2016),pp. 564-569
|
[47] |
Zhang, C.D., Li, F.F., Chen, X.Y. et al. J. Insect. Physiol., 58 (2012),pp. 974-978
|
[48] |
Zuleger, N., Boyle, S., Kelly, D.A. et al. Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery Genome Biol., 14 (2013),p. R14
|