5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 9
Sep.  2017
Turn off MathJax
Article Contents

Key elements for designing and performing a CRISPR/Cas9-based genetic screen

doi: 10.1016/j.jgg.2017.09.005
More Information
  • Corresponding author: E-mail address: fangf@shanghaitech.edu.cn (Gaofeng Fan); E-mail address: wanghp@shanghaitech.edu.cn (Haopeng Wang)
  • Received Date: 2017-06-01
  • Accepted Date: 2017-09-04
  • Rev Recd Date: 2017-07-09
  • Available Online: 2017-09-22
  • Publish Date: 2017-09-20
  • Reverse genetic screens are invaluable for uncovering gene functions, but are traditionally hampered by some technical limitations. Over the past few years, since the advent of the revolutionary CRISPR/Cas9 technology, its power in genome editing has been harnessed to overcome the traditional limitations in reverse genetic screens, with successes in various biological contexts. Here, we outline these CRISPR/Cas9-based screens, provide guidance on the design of effective screens and discuss the potential future directions of development of this field.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Agrotis, A., Ketteler, R. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening Front. Genet., 6 (2015),p. 300
    [2]
    Aguirre, A.J., Meyers, R.M., Weir, B.A. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting Cancer Discov., 6 (2016),pp. 914-929
    [3]
    Arroyo, J.D., Jourdain, A.A., Calvo, S.E. et al. A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation Cell Metab., 24 (2016),pp. 875-885
    [4]
    Bandell, M., Dubin, A.E., Petrus, M.J. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol Nat. Neurosci., 9 (2006),pp. 493-500
    [5]
    Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
    [6]
    Bassett, A.R., Kong, L., Liu, J.L. J. Genet. Genomics, 42 (2015),pp. 301-309
    [7]
    Berns, K., Hijmans, E.M., Mullenders, J. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway Nature, 428 (2004),pp. 431-437
    [8]
    Birsoy, K., Wang, T., Chen, W.W. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis Cell, 162 (2015),pp. 540-551
    [9]
    Boutros, M., Ahringer, J. The art and design of genetic screens: RNA interference Nat. Rev. Genet., 9 (2008),pp. 554-566
    [10]
    Budhu, S., Loike, J.D., Pandolfi, A. et al. J. Exp. Med., 207 (2010),pp. 223-235
    [11]
    Cerami, E., Gao, J., Dogrusoz, U. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data Cancer Discov., 2 (2012),pp. 401-404
    [12]
    Chapman, K.M., Medrano, G.A., Jaichander, P. et al. Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells Cell Rep., 10 (2015),pp. 1828-1835
    [13]
    Chen, S., Sanjana, N.E., Zheng, K. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis Cell, 160 (2015),pp. 1246-1260
    [14]
    Chen, W., Zhang, Y., Yeo, W.S. et al. J. Am. Chem. Soc., 139 (2017),pp. 3790-3795
    [15]
    Chi, S., Weiss, A., Wang, H. A CRISPR-based toolbox for studying T cell signal transduction Biomed. Res. Int., 2016 (2016),p. 5052369
    [16]
    Cho, S.W., Lee, J., Carroll, D. et al. Genetics, 195 (2013),pp. 1177-1180
    [17]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [18]
    Dang, Y., Jia, G., Choi, J. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency Genome Biol., 16 (2015),p. 280
    [19]
    Deans, R.M., Morgens, D.W., Okesli, A. et al. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification Nat. Chem. Biol., 12 (2016),pp. 361-366
    [20]
    DiCarlo, J.E., Norville, J.E., Mali, P. et al. Nucleic Acids Res., 41 (2013),pp. 4336-4343
    [21]
    Dixit, A., Parnas, O., Li, B. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens Cell, 167 (2016),pp. 1853-1866
    [22]
    Doench, J.G., Fusi, N., Sullender, M. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 Nat. Biotechnol., 34 (2016),pp. 184-191
    [23]
    Donovan, K.F., Hegde, M., Sullender, M. et al. Creation of novel protein variants with CRISPR/Cas9-mediated mutagenesis: turning a screening by-product into a discovery tool PLoS One, 12 (2017),p. e0170445
    [24]
    Gayle, S., Landrette, S., Beeharry, N. et al. Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma Blood, 129 (2017),pp. 1768-1778
    [25]
    Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. Genome-scale CRISPR-mediated control of gene repression and activation Cell, 159 (2014),pp. 647-661
    [26]
    Guo, D., Liu, H., Gao, G. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells Stem Cell Res., 17 (2016),pp. 670-672
    [27]
    Gwack, Y., Sharma, S., Nardone, J. et al. Nature, 441 (2006),pp. 646-650
    [28]
    Haga, K., Fujimoto, A., Takai-Todaka, R. et al. Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. E6248-E6255
    [29]
    Hai, T., Teng, F., Guo, R. et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system Cell Res., 24 (2014),pp. 372-375
    [30]
    Han, X., Liu, Z., Zhao, L. et al. Microfluidic cell deformability assay for rapid and efficient kinase screening with the CRISPR-Cas9 system Angew. Chem. Int. Ed. Engl., 55 (2016),pp. 8561-8565
    [31]
    Han, K., Jeng, E.E., Hess, G.T. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions Nat. Biotechnol., 35 (2017),pp. 463-474
    [32]
    Hart, T., Chandrashekhar, M., Aregger, M. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities Cell, 163 (2015),pp. 1515-1526
    [33]
    Hedlund, E., Deng, Q. Single-cell RNA sequencing: technical advancements and biological applications Mol. Asp. Med. (2017)
    [34]
    Hong, A.L., Tseng, Y.Y., Cowley, G.S. et al. Integrated genetic and pharmacologic interrogation of rare cancers Nat. Commun., 7 (2016),p. 11987
    [35]
    Horlbeck, M.A., Gilbert, L.A., Villalta, J.E. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation eLife, 5 (2016),p. e19760
    [36]
    Hrabe de Angelis, M.H., Flaswinkel, H., Fuchs, H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis Nat. Genet., 25 (2000),pp. 444-447
    [37]
    Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [38]
    Hultquist, J.F., Schumann, K., Woo, J.M. et al. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells Cell Rep., 17 (2016),pp. 1438-1452
    [39]
    Jaitin, D.A., Weiner, A., Yofe, I. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq Cell, 167 (2016),pp. 1883-1896
    [40]
    Joung, J., Konermann, S., Gootenberg, J.S. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening Nat. Protoc., 12 (2017),pp. 828-863
    [41]
    Katigbak, A., Cencic, R., Robert, F. et al. A CRISPR/Cas9 functional screen identifies rare tumor suppressors Sci. Rep., 6 (2016),p. 38968
    [42]
    Keng, V.W., Villanueva, A., Chiang, D.Y. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma Nat. Biotechnol., 27 (2009),pp. 264-274
    [43]
    Klein, A.M., Mazutis, L., Akartuna, I. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells Cell, 161 (2015),pp. 1187-1201
    [44]
    Koike-Yusa, H., Li, Y., Tan, E.P. et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library Nat. Biotechnol., 32 (2014),pp. 267-273
    [45]
    Konermann, S., Brigham, M.D., Trevino, A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature, 517 (2015),pp. 583-588
    [46]
    Korkmaz, G., Lopes, R., Ugalde, A.P. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 Nat. Biotechnol., 34 (2016),pp. 192-198
    [47]
    Kurata, M., Rathe, S.K., Bailey, N.J. et al. Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML Sci. Rep., 6 (2016),p. 36199
    [48]
    Larson, M.H., Gilbert, L.A., Wang, X. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression Nat. Protoc., 8 (2013),pp. 2180-2196
    [49]
    Lee, S.S., Lee, R.Y., Fraser, A.G. et al. Nat. Genet., 33 (2003),pp. 40-48
    [50]
    Li, W., Xu, H., Xiao, T. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens Genome Biol., 15 (2014),p. 554
    [51]
    Liu, S.J., Horlbeck, M.A., Cho, S.W. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells Science, 355 (2017)
    [52]
    Ma, H., Dang, Y., Wu, Y. et al. A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death Cell Rep., 12 (2015),pp. 673-683
    [53]
    Macosko, E.Z., Basu, A., Satija, R. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets Cell, 161 (2015),pp. 1202-1214
    [54]
    Maeder, M.L., Linder, S.J., Cascio, V.M. et al. CRISPR RNA-guided activation of endogenous human genes Nat. Methods, 10 (2013),pp. 977-979
    [55]
    Marceau, C.D., Puschnik, A.S., Majzoub, K. et al. Nature, 535 (2016),pp. 159-163
    [56]
    Nakayama, T., Fish, M.B., Fisher, M. et al. Genesis, 51 (2013),pp. 835-843
    [57]
    O'Donnell, K.A., Keng, V.W., York, B. et al. A sleeping beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. E1377-E1386
    [58]
    Orchard, R.C., Wilen, C.B., Doench, J.G. et al. Discovery of a proteinaceous cellular receptor for a norovirus Science, 353 (2016),pp. 933-936
    [59]
    Park, R.J., Wang, T., Koundakjian, D. et al. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors Nat. Genet., 49 (2017),pp. 193-203
    [60]
    Parnas, O., Jovanovic, M., Eisenhaure, T.M. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks Cell, 162 (2015),pp. 675-686
    [61]
    Peng, J., Zhou, Y., Zhu, S. et al. High-throughput screens in mammalian cells using the CRISPR-Cas9 system FEBS J., 282 (2015),pp. 2089-2096
    [62]
    Rauscher, B., Heigwer, F., Breinig, M. et al. GenomeCRISPR - a database for high-throughput CRISPR/Cas9 screens Nucleic Acids Res., 45 (2017),pp. D679-D686
    [63]
    Ren, Q., Li, C., Yuan, P. et al. A dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus Sci. Rep., 5 (2015),p. 8865
    [64]
    Ruiz, S., Mayor-Ruiz, C., Lafarga, V. et al. A genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors Mol. Cell, 62 (2016),pp. 307-313
    [65]
    Sanjana, N.E., Shalem, O., Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening Nat. Methods, 11 (2014),pp. 783-784
    [66]
    Sanjana, N.E., Wright, J., Zheng, K. et al. High-resolution interrogation of functional elements in the noncoding genome Science, 353 (2016),pp. 1545-1549
    [67]
    Savidis, G., McDougall, W.M., Meraner, P. et al. Identification of Zika virus and dengue virus dependency factors using functional genomics Cell Rep., 16 (2016),pp. 232-246
    [68]
    Schmid-Burgk, J.L., Chauhan, D., Schmidt, T. et al. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation J. Biol. Chem., 291 (2016),pp. 103-109
    [69]
    Schumann, K., Lin, S., Boyer, E. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 10437-10442
    [70]
    Shah, A.N., Davey, C.F., Whitebirch, A.C. et al. Rapid reverse genetic screening using CRISPR in zebrafish Nat. Methods, 12 (2015),pp. 535-540
    [71]
    Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
    [72]
    Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
    [73]
    Sidik, S.M., Huet, D., Ganesan, S.M. et al. Cell, 166 (2016),pp. 1423-1435
    [74]
    Smith, F.M., Vearing, C., Lackmann, M. et al. Dissecting the EphA3/Ephrin-A5 interactions using a novel functional mutagenesis screen J. Biol. Chem., 279 (2004),pp. 9522-9531
    [75]
    Song, C.Q., Li, Y., Mou, H. et al. Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice Gastroenterology, 152 (2017),pp. 1161-1173
    [76]
    Tan, J., Martin, S.E. Validation of synthetic CRISPR reagents as a tool for arrayed functional genomic screening PLoS One, 11 (2016),p. e0168968
    [77]
    Tian, R., Wang, H., Gish, G.D. et al. Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. E1594-E1603
    [78]
    Tzelepis, K., Koike-Yusa, H., De Braekeleer, E. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia Cell Rep., 17 (2016),pp. 1193-1205
    [79]
    Virreira Winter, S., Zychlinsky, A., Bardoel, B.W. Sci. Rep., 6 (2016),p. 24242
    [80]
    Waaijers, S., Portegijs, V., Kerver, J. et al. Genetics, 195 (2013),pp. 1187-1191
    [81]
    Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
    [82]
    Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [83]
    Wang, T., Birsoy, K., Hughes, N.W. et al. Identification and characterization of essential genes in the human genome Science, 350 (2015),pp. 1096-1101
    [84]
    Wu, Y., Zhou, L., Wang, X. et al. A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A Cell Discov., 2 (2016),p. 16014
    [85]
    Xia, P., Zhang, X., Xie, Y. et al. Functional toxicogenomic assessment of triclosan in human HepG2 cells using genome-wide CRISPR-Cas9 screening Environ. Sci. Technol., 50 (2016),pp. 10682-10692
    [86]
    Xu, C., Qi, X., Du, X. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 722-727
    [87]
    Zhang, L., Reed, R.D. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns Nat. Commun., 7 (2016),p. 11769
    [88]
    Zhang, S.L., Yeromin, A.V., Zhang, X.H. et al. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 9357-9362
    [89]
    Zhang, Y., Ge, X., Yang, F. et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells Sci. Rep., 4 (2014),p. 5405
    [90]
    Zhang, R., Miner, J.J., Gorman, M.J. et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses Nature, 535 (2016),pp. 164-168
    [91]
    Zheng, G.X., Terry, J.M., Belgrader, P. et al. Massively parallel digital transcriptional profiling of single cells Nat. Commun., 8 (2017),p. 14049
    [92]
    Zhong, C., Yin, Q., Xie, Z. et al. CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library Cell Stem Cell, 17 (2015),pp. 221-232
    [93]
    Zhou, Y., Zhu, S., Cai, C. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells Nature, 509 (2014),pp. 487-491
    [94]
    Zhu, S., Li, W., Liu, J. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library Nat. Biotechnol., 34 (2016),pp. 1279-1286
    [95]
    Zuber, J., Shi, J., Wang, E. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia Nature, 478 (2011),pp. 524-528
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return