9.9
CiteScore
7.1
Impact Factor
Volume 51 Issue 11
Nov.  2024

Ectopic expression of Myomaker and Myomixer in slow muscle cells induces slow muscle fusion and myofiber death

doi: 10.1016/j.jgg.2024.08.006
Funds:

This work was supported by funding from the U.S. National Institute of Health (NIH) National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR072703 to S.D.).

  • Received Date: 2024-05-31
  • Accepted Date: 2024-08-21
  • Rev Recd Date: 2024-08-21
  • Available Online: 2025-06-06
  • Publish Date: 2024-08-30
  • Zebrafish embryos possess two major types of myofibers, the slow and fast fibers, with distinct patterns of cell fusion. The fast muscle cells can fuse, while the slow muscle cells cannot. Here, we show that myomaker is expressed in both slow and fast muscle precursors, whereas myomixer is exclusive to fast muscle cells. The loss of Prdm1a, a regulator of slow muscle differentiation, results in strong myomaker and myomixer expression and slow muscle cell fusion. This abnormal fusion is further confirmed by the direct ectopic expression of myomaker or myomixer in slow muscle cells of transgenic models. Using the transgenic models, we show that the heterologous fusion between slow and fast muscle cells can alter slow muscle cell migration and gene expression. Furthermore, the overexpression of myomaker and myomixer also disrupts membrane integrity, resulting in muscle cell death. Collectively, this study identifies that the fiber-type-specific expression of fusogenic proteins is critical for preventing inappropriate fusion between slow and fast fibers in fish embryos, highlighting the need for precise regulation of fusogenic gene expression to maintain muscle fiber integrity and specificity.
  • Barresi, M.J.F., D’Angelo, J.A., Hernandez, L.P., Devoto, S.H., 2001. Distinct mechanisms regulate slow-muscle development. Curr. Biol. 11, 1432-1438.
    Baxendale, S., Davison, C., Muxworthy, C., Wolff, C., Ingham, P.W., Roy, S., 2004. The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nat. Genet. 36, 88-93.
    Bi, P., McAnally, J.R., Shelton, J.M., Sanchez-Ortiz, E., Bassel-Duby, R., Olson, E.N., 2018. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. Proc. Natl. Acad. Sci. 115, 3864-3869.
    Bi, P., Ramirez-Martinez, A., Li, H., Cannavino, J., McAnally, J.R., Shelton, J.M., Sanchez-Ortiz, E., Bassel-Duby, R., Olson, E.N., 2017. Control of muscle formation by the fusogenic micropeptide myomixer. Science 356, 323-327.
    Billah, Md.M., Or Rashid, Md.M., Ahmed, M., Yamazaki, M., 2023. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids. Biochim. Biophys. Acta. BBA - Biomembr. 1865, 184112.
    Blau, H.M., Pavlath, G.K., Hardeman, E.C., Chiu, C.-P., Silberstein, L., Webster, S.G., Miller, S.C., Webster, C., 1985. Plasticity of the Differentiated State. Science 230, 758-766.
    Bryson-Richardson, R. j., Daggett, D. f., Cortes, F., Neyt, C., Keenan, D. g., Currie, P. d., 2005. Myosin heavy chain expression in zebrafish and slow muscle composition. Dev. Dyn. 233, 1018-1022.
    Chen, B., You, W., Wang, Y., Shan, T., 2020. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration. Cell. Mol. Life Sci. 77, 1551-1569.
    Chiu, C.-P., Blau, H.M., 1984. Reprogramming cell differentiation in the absence of DNA synthesis. Cell 37, 879-887.
    Devoto, S.H., Melancon, E., Eisen, J.S., Westerfield, M., 1996. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122, 3371-3380.
    Di Gioia, S.A., Connors, S., Matsunami, N., Cannavino, J., Rose, M.F., Gilette, N.M., Artoni, P., de Macena Sobreira, N.L., Chan, W.-M., Webb, B.D., et al., 2017. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat. Commun. 8, 16077.
    Dunn, K., Vashisht, A., Hammond-Weinberger, D.R., 2022. Comparative in situ hybridization protocols in zebrafish. BioTechniques 73, 123-130.
    Elworthy, S., Hargrave, M., Knight, R., Mebus, K., Ingham, P.W., 2008. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity. Development 135, 2115-2126.
    Gamage, D.G., Melikov, K., Munoz-Tello, P., Wherley, T.J., Focke, L.C., Leikina, E., Huffman, E., Diao, J., Kojetin, D.J., Prasad, V., et al., 2022. Phosphatidylserine orchestrates Myomerger membrane insertions to drive myoblast fusion. Proc. Natl. Acad. Sci. 119, e2202490119.
    Goh, Q., Millay, D.P., 2017. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. eLife 6, e20007.
    Golani, G., Leikina, E., Melikov, K., Whitlock, J.M., Gamage, D.G., Luoma-Overstreet, G., Millay, D.P., Kozlov, M.M., Chernomordik, L.V., 2021. Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm. Nat. Commun. 12, 495.
    Gurdon, J.B., Melton, D.A., 2008. Nuclear reprogramming in cells. Science 322, 1811-1815.
    Ham, T.J., Mapes, J., Kokel, D., Peterson, R.T., 2010. Live imaging of apoptotic cells in zebrafish. FASEB J. 24, 4336-4342.
    Hamer, P., McGeachie, J., Davies, M., Grounds, M., 2002. Evans blue dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J. Anat. 200, 69-79.
    Henry, C.A., Amacher, S.L., 2004. Zebrafish slow muscle cell migration induces a wave of fast muscle morphogenesis. Dev. Cell 7, 917-923.
    Hernandez-Lagunas, L., Choi, I.F., Kaji, T., Simpson, P., Hershey, C., Zhou, Y., Zon, L., Mercola, M., Artinger, K.B., 2005. Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev. Biol. 278, 347-357.
    Hindi, S.M., Millay, D.P., 2022. All for one and one for all: regenerating skeletal muscle. Cold Spring Harb. Perspect. Biol. 14, a040824.
    Hromowyk, K.J., Talbot, J.C., Martin, B.L., Janssen, P.M.L., Amacher, S.L., 2020. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev. Biol. 462, 85-100.
    Jackson, H.E., Ingham, P.W., 2013. Control of muscle fibre-type diversity during embryonic development: The zebrafish paradigm. Mech. Dev. 130, 447-457.
    Landemaine, A., Rescan, P.-Y., Gabillard, J.-C., 2014. Myomaker mediates fusion of fast myocytes in zebrafish embryos. Biochem. Biophys. Res. Commun. 451, 480-484.
    Lauter, G., Soll, I., Hauptmann, G., 2011. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev. Biol. 11, 43.
    Lee, W., Lee, D.G., 2014. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol. 69, 794-801.
    Leikina, E., Gamage, D.G., Prasad, V., Goykhberg, J., Crowe, M., Diao, J., Kozlov, M.M., Chernomordik, L.V., Millay, D.P., 2018. Myomaker and Myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion. Dev. Cell 46, 767-780.e7.
    Li, M., Hromowyk, K.J., Amacher, S.L., Currie, P.D., 2017. Muscular dystrophy modeling in zebrafish, in: Methods in Cell Biology. Elsevier, pp. 347-380.
    Li, S., Wen, H., Du, S., 2020. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J. 34, 1378-1397.
    Long, T., Zhang, Y., Donnelly, L., Li, H., Pien, Y.-C., Liu, N., Olson, E.N., Li, X., 2023. Cryo-EM structures of Myomaker reveal a molecular basis for myoblast fusion. Nat. Struct. Mol. Biol. 30, 1746-1754.
    Luo, Z., Shi, J., Pandey, P., Ruan, Z.-R., Sevdali, M., Bu, Y., Lu, Y., Du, S., Chen, E.H., 2022. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev. Cell 57, 1582-1597.e6.
    Mendieta-Serrano, M.A., Dhar, S., Ng, B.H., Narayanan, R., Lee, J.J.Y., Ong, H.T., Toh, P.J.Y., Rollin, A., Roy, S., Saunders, T.E., 2022. Slow muscles guide fast myocyte fusion to ensure robust myotome formation despite the high spatiotemporal stochasticity of fusion events. Dev. Cell 57, 2095-2110.e5.
    Millay, D.P., 2022. Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations. Exp. Cell Res. 415, 113134.
    Millay, D.P., Gamage, D.G., Quinn, M.E., Min, Y.-L., Mitani, Y., Bassel-Duby, R., Olson, E.N., 2016. Structure-function analysis of myomaker domains required for myoblast fusion. Proc. Natl. Acad. Sci. U. S. A. 113, 2116-2121.
    Millay, D.P., O’Rourke, J.R., Sutherland, L.B., Bezprozvannaya, S., Shelton, J.M., Bassel-Duby, R., Olson, E.N., 2013. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499, 301-305.
    Millay, D.P., Sutherland, L.B., Bassel-Duby, R., Olson, E.N., 2014. Myomaker is essential for muscle regeneration. Genes Dev. 28, 1641-1646.
    Mitani, Y., Vagnozzi, R.J., Millay, D.P., 2017. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. FASEB J. 31, 400-411.
    Morsch, M., Radford, R., Lee, A., Don, E.K., Badrock, A.P., Hall, T.E., Cole, N.J., Chung, R., 2015. In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord. Front. Cell. Neurosci. 9.
    Ono, Y., Yu, W., Jackson, H.E., Parkin, C.A., Ingham, P.W., 2015. Adaxial cell migration in the zebrafish embryo is an active cell autonomous property that requires the Prdm1a transcription factor. Differentiation 89, 77-86.
    Petrany, M.J., Millay, D.P., 2019. Cell fusion: merging membranes and making muscle. Trends Cell Biol. 29, 964-973.
    Petrany, M.J., Song, T., Sadayappan, S., Millay, D.P., 2020. Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight 5, e136095.
    Pomerantz, J.H., Mukherjee, S., Palermo, A.T., Blau, H.M., 2009. Reprogramming to a muscle fate by fusion recapitulates differentiation. J. Cell Sci. 122, 1045-1053.
    Powell, G.T., Wright, G.J., 2011. Jamb and Jamc are essential for vertebrate myocyte fusion. PLoS Biol. 9, e1001216.
    Quinn, M.E., Goh, Q., Kurosaka, M., Gamage, D.G., Petrany, M.J., Prasad, V., Millay, D.P., 2017. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat. Commun. 8, 15665.
    Ramirez-Martinez, A., Zhang, Y., van den Boogaard, M.-J., McAnally, J.R., Rodriguez-Caycedo, C., Chai, A.C., Chemello, F., Massink, M.P.G., Cuppen, I., Elferink, M.G., et al., 2022. Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J. Clin. Invest. 132, e159002.
    Roy, S., Wolff, C., Ingham, P.W., 2001. The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev. 15, 1563-1576.
    Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675.
    Shi, J., Bi, P., Pei, J., Li, H., Grishin, N.V., Bassel-Duby, R., Chen, E.H., Olson, E.N., 2017. Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 114, 11950-11955.
    Shi, J., Cai, M., Si, Y., Zhang, J., Du, S., 2018. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adipocyte infiltration in zebrafish skeletal muscle. Hum. Mol. Genet. 27, 3542-3554.
    Smith, S.J., Horstick, E.J., Davidson, A.E., Dowling, J., 2015. Analysis of zebrafish larvae skeletal muscle integrity with evans blue dye. J. Vis. Exp. 53183.
    Srinivas, B.P., Woo, J., Leong, W.Y., Roy, S., 2007. A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat. Genet. 39, 781-786.
    Thisse, C., Thisse, B., 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69.
    Urasaki, A., Morvan, G., Kawakami, K., 2006. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639-649.
    Witcher, P.C., Sun, C., Millay, D.P., 2023. Expression of Myomaker and Myomerger in myofibers causes muscle pathology. Skelet. Muscle 13, 8.
    Wu, P., Yong, P., Zhang, Z., Xu, R., Shang, R., Shi, J., Zhang, J., Bi, P., Chen, E., Du, S., 2022. Loss of myomixer results in defective myoblast fusion, impaired muscle growth, and severe myopathy in zebrafish. Mar. Biotechnol. 24, 1023-1038.
    Xing, L., Quist, T.S., Stevenson, T.J., Dahlem, T.J., Bonkowsky, J.L., 2014. Rapid and efficient zebrafish genotyping using PCR with high-resolution melt analysis. J. Vis. Exp. 5, e51138.
    Zaina, S., del Pilar Valencia-Morales, M., Tristan-Flores, F.E., Lund, G., 2013. Nuclear reprogramming and its role in vascular smooth muscle cells. Curr. Atheroscler. Rep. 15, 352.
    Zhang, H., Shang, R., Kim, K., Zheng, W., Johnson, C.J., Sun, L., Niu, X., Liu, Liang, Zhou, J., Liu, Lingshu, et al., 2022. Evolution of a chordate-specific mechanism for myoblast fusion. Sci. Adv. 8, eadd2696.
    Zhang, H., Wen, J., Bigot, A., Chen, J., Shang, R., Mouly, V., Bi, P., 2020. Human myotube formation is determined by MyoD-Myomixer/Myomaker axis. Sci. Adv. 6, eabc4062.
    Zhang, Q., Vashisht, A.A., O’Rourke, J., Corbel, S.Y., Moran, R., Romero, A., Miraglia, L., Zhang, J., Durrant, E., Schmedt, C., et al., 2017. The microprotein Minion controls cell fusion and muscle formation. Nat. Commun. 8, 15664.
    Zhang, W., Roy, S., 2017a. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo. Dev. Biol. 423, 24-33.
  • Relative Articles

    [1]De-Li Shi. Interplay of RNA-binding proteins controls germ cell development in zebrafish[J]. Journal of Genetics and Genomics, 2024, 51(9): 889-899. doi: 10.1016/j.jgg.2024.06.020
    [2]Ting Li, Tursunjan Aziz, Guangyuan Li, Lin Zhang, Jihua Yao, Shunji Jia. A zebrafish tufm mutant model for the COXPD4 syndrome of aberrant mitochondrial function[J]. Journal of Genetics and Genomics, 2024, 51(9): 922-933. doi: 10.1016/j.jgg.2024.05.009
    [3]Ji-Won Park, Tae-Ik Choi, Tae-Yoon Kim, Yu-Ri Lee, Dilan Wellalage Don, Jaya K. George-Abraham, Laurie A. Robak, Cristina C. Trandafir, Pengfei Liu, Jill A. Rosenfeld, Tae Hyeong Kim, Florence Petit, Yoo-Mi Kim, Chong Kun Cheon, Yoonsung Lee, Cheol-Hee Kim. RFC2 may contribute to the pathogenicity of Williams syndrome revealed in a zebrafish model[J]. Journal of Genetics and Genomics, 2024, 51(12): 1389-1403. doi: 10.1016/j.jgg.2024.09.016
    [4]Yayue Chen, Delai Huang, Aixuan Xie, Ying Shan, Shuyi Zhao, Ce Gao, Jun Chen, Hui Shi, Weihuan Fang, Jinrong Peng. Capn3b-deficient zebrafish model reveals a key role of autoimmune response in LGMDR1[J]. Journal of Genetics and Genomics, 2024, 51(12): 1375-1388. doi: 10.1016/j.jgg.2024.09.011
    [5]Hua Cheng, Ziyan Guo, Xiaoyu Zhang, Xiao-Jin Wang, Zizhang Li, Wen-Wen Huo, Hong-Cheng Zhong, Xiao-Jian Li, Xiang-Wen Wu, Wen-Hao Li, Zhuo-Wen Chen, Tian-Chi Wu, Xiang-Feng Gan, Bei-Long Zhong, Vassily A. Lyubetsky, Leonid Yu Rusin, Junnan Yang, Qiyi Zhao, Qing-Dong Cao, Jian-Rong Yang. Lack of evolutionary convergence in multiple primary lung cancer suggests insufficient specificity of personalized therapy[J]. Journal of Genetics and Genomics, 2023, 50(5): 330-340. doi: 10.1016/j.jgg.2022.11.005
    [6]Chaoying Wu, Wenfeng Zhang, Yiyu Luo, Chaoqing Cheng, Xinjuan Wang, Yan Jiang, Shuang Li, Lingfei Luo, Yun Yang. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis[J]. Journal of Genetics and Genomics, 2023, 50(12): 1004-1013. doi: 10.1016/j.jgg.2023.05.013
    [7]Xuerui Lu, Shixi Shi, Chong Wu, Xueao Zheng, Chenkun Yang, Jie Luo, Shunping Yan. The shikimate pathway regulates programmed cell death[J]. Journal of Genetics and Genomics, 2022, 49(10): 943-951. doi: 10.1016/j.jgg.2022.02.001
    [8]Wenjuan Pu, Ximeng Han, Mingjun Zhang, Yan Li, Xiuzhen Huang, Lingjuan He, Bin Zhou. Resident endothelial cells generate hepatocytes through cell fusion in adult mouse liver[J]. Journal of Genetics and Genomics, 2020, 47(4): 225-228. doi: 10.1016/j.jgg.2020.03.006
    [9]Yuanyuan Liu, Chong Zhang, Yanjun Zhang, Siyao Lin, De-Li Shi, Ming Shao. Highly efficient genome editing using oocyte-specific zcas9 transgenic zebrafish[J]. Journal of Genetics and Genomics, 2018, 45(9): 509-512. doi: 10.1016/j.jgg.2018.05.004
    [10]Zhiguo Wu, Yan Yang, Gai Huang, Jing Lin, Yuying Xia, Yuxian Zhu. Cotton functional genomics reveals global insight into genome evolution and fiber development[J]. Journal of Genetics and Genomics, 2017, 44(11): 511-518. doi: 10.1016/j.jgg.2017.09.009
    [11]Jiying Zhao, Pengcheng Liu, Chunrong Li, Yanyan Wang, Lequn Guo, Guanghuai Jiang, Wenxue Zhai. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice[J]. Journal of Genetics and Genomics, 2017, 44(2): 107-118. doi: 10.1016/j.jgg.2016.12.005
    [12]Zhu Song, Xiaoli Zhang, Shuo Jia, Pamela C. Yelick, Chengtian Zhao. Zebrafish as a Model for Human Ciliopathies[J]. Journal of Genetics and Genomics, 2016, 43(3): 107-120. doi: 10.1016/j.jgg.2016.02.001
    [13]Jianmeng Cao, Shangqi Li, Ming Shao, Xiaoning Cheng, Zhigang Xu, Deli Shi. The PDZ-Containing Unconventional Myosin XVIIIA Regulates Embryonic Muscle Integrity in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(8): 417-428. doi: 10.1016/j.jgg.2014.06.008
    [14]Yun-Mi Jeong, Tae-Eun Jin, Jung-Hwa Choi, Mi-Sun Lee, Hyun-Taek Kim, Kyu-Seok Hwang, Doo-Sang Park, Hyun-Woo Oh, Joong-Kook Choi, Vladimir Korzh, Melitta Schachner, Kwan-Hee You, Cheol-Hee Kim. Induction of clusterin Expression by Neuronal Cell Death in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(11): 583-589. doi: 10.1016/j.jgg.2014.08.007
    [15]Qilin Gu, Xiaojie Yang, Xiaozhen He, Qing Li, Zongbin Cui. Generation and Characterization of a Transgenic Zebrafish Expressing the Reverse Tetracycline Transactivator[J]. Journal of Genetics and Genomics, 2013, 40(10): 523-531. doi: 10.1016/j.jgg.2013.06.008
    [16]Ya-juan Li, Bing Hu. Establishment of Multi-Site Infection Model in Zebrafish Larvae for Studying Staphylococcus aureus Infectious Disease[J]. Journal of Genetics and Genomics, 2012, 39(9): 521-534. doi: 10.1016/j.jgg.2012.07.006
    [17]Haozhen Nie, Yingying Wu, Chunpeng Yao, Dingzhong Tang. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis[J]. Journal of Genetics and Genomics, 2011, 38(4): 137-148. doi: 10.1016/j.jgg.2011.03.001
    [18]Jianhui Ma, Qian Sun, Ruifang Mi, Hongbing Zhang. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling[J]. Journal of Genetics and Genomics, 2011, 38(11): 533-537. doi: 10.1016/j.jgg.2011.10.002
    [19]Yonghua Wang, Lixia Wang, Zhaohui Wang. Transgenic analyses of TGIF family proteins in Drosophila imply their role in cell growth[J]. Journal of Genetics and Genomics, 2008, 35(8): 457-465. doi: 10.1016/S1673-8527(08)60063-6
    [20]David S. Skibbe, Xiujuan Wang, Lisa A. Borsuk, Daniel A. Ashlock, Dan Nettleton, Patrick S. Schnable. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death[J]. Journal of Genetics and Genomics, 2008, 35(10): 603-616. doi: 10.1016/S1673-8527(08)60081-8
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads (0) Cited by (2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return