Barresi, M.J.F., D’Angelo, J.A., Hernandez, L.P., Devoto, S.H., 2001. Distinct mechanisms regulate slow-muscle development. Curr. Biol. 11, 1432-1438.
|
Baxendale, S., Davison, C., Muxworthy, C., Wolff, C., Ingham, P.W., Roy, S., 2004. The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nat. Genet. 36, 88-93.
|
Bi, P., McAnally, J.R., Shelton, J.M., Sanchez-Ortiz, E., Bassel-Duby, R., Olson, E.N., 2018. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. Proc. Natl. Acad. Sci. 115, 3864-3869.
|
Bi, P., Ramirez-Martinez, A., Li, H., Cannavino, J., McAnally, J.R., Shelton, J.M., Sanchez-Ortiz, E., Bassel-Duby, R., Olson, E.N., 2017. Control of muscle formation by the fusogenic micropeptide myomixer. Science 356, 323-327.
|
Billah, Md.M., Or Rashid, Md.M., Ahmed, M., Yamazaki, M., 2023. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids. Biochim. Biophys. Acta. BBA - Biomembr. 1865, 184112.
|
Blau, H.M., Pavlath, G.K., Hardeman, E.C., Chiu, C.-P., Silberstein, L., Webster, S.G., Miller, S.C., Webster, C., 1985. Plasticity of the Differentiated State. Science 230, 758-766.
|
Bryson-Richardson, R. j., Daggett, D. f., Cortes, F., Neyt, C., Keenan, D. g., Currie, P. d., 2005. Myosin heavy chain expression in zebrafish and slow muscle composition. Dev. Dyn. 233, 1018-1022.
|
Chen, B., You, W., Wang, Y., Shan, T., 2020. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration. Cell. Mol. Life Sci. 77, 1551-1569.
|
Chiu, C.-P., Blau, H.M., 1984. Reprogramming cell differentiation in the absence of DNA synthesis. Cell 37, 879-887.
|
Devoto, S.H., Melancon, E., Eisen, J.S., Westerfield, M., 1996. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122, 3371-3380.
|
Di Gioia, S.A., Connors, S., Matsunami, N., Cannavino, J., Rose, M.F., Gilette, N.M., Artoni, P., de Macena Sobreira, N.L., Chan, W.-M., Webb, B.D., et al., 2017. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat. Commun. 8, 16077.
|
Dunn, K., Vashisht, A., Hammond-Weinberger, D.R., 2022. Comparative in situ hybridization protocols in zebrafish. BioTechniques 73, 123-130.
|
Elworthy, S., Hargrave, M., Knight, R., Mebus, K., Ingham, P.W., 2008. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity. Development 135, 2115-2126.
|
Gamage, D.G., Melikov, K., Munoz-Tello, P., Wherley, T.J., Focke, L.C., Leikina, E., Huffman, E., Diao, J., Kojetin, D.J., Prasad, V., et al., 2022. Phosphatidylserine orchestrates Myomerger membrane insertions to drive myoblast fusion. Proc. Natl. Acad. Sci. 119, e2202490119.
|
Goh, Q., Millay, D.P., 2017. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. eLife 6, e20007.
|
Golani, G., Leikina, E., Melikov, K., Whitlock, J.M., Gamage, D.G., Luoma-Overstreet, G., Millay, D.P., Kozlov, M.M., Chernomordik, L.V., 2021. Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm. Nat. Commun. 12, 495.
|
Gurdon, J.B., Melton, D.A., 2008. Nuclear reprogramming in cells. Science 322, 1811-1815.
|
Ham, T.J., Mapes, J., Kokel, D., Peterson, R.T., 2010. Live imaging of apoptotic cells in zebrafish. FASEB J. 24, 4336-4342.
|
Hamer, P., McGeachie, J., Davies, M., Grounds, M., 2002. Evans blue dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J. Anat. 200, 69-79.
|
Henry, C.A., Amacher, S.L., 2004. Zebrafish slow muscle cell migration induces a wave of fast muscle morphogenesis. Dev. Cell 7, 917-923.
|
Hernandez-Lagunas, L., Choi, I.F., Kaji, T., Simpson, P., Hershey, C., Zhou, Y., Zon, L., Mercola, M., Artinger, K.B., 2005. Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev. Biol. 278, 347-357.
|
Hindi, S.M., Millay, D.P., 2022. All for one and one for all: regenerating skeletal muscle. Cold Spring Harb. Perspect. Biol. 14, a040824.
|
Hromowyk, K.J., Talbot, J.C., Martin, B.L., Janssen, P.M.L., Amacher, S.L., 2020. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev. Biol. 462, 85-100.
|
Jackson, H.E., Ingham, P.W., 2013. Control of muscle fibre-type diversity during embryonic development: The zebrafish paradigm. Mech. Dev. 130, 447-457.
|
Landemaine, A., Rescan, P.-Y., Gabillard, J.-C., 2014. Myomaker mediates fusion of fast myocytes in zebrafish embryos. Biochem. Biophys. Res. Commun. 451, 480-484.
|
Lauter, G., Soll, I., Hauptmann, G., 2011. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev. Biol. 11, 43.
|
Lee, W., Lee, D.G., 2014. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol. 69, 794-801.
|
Leikina, E., Gamage, D.G., Prasad, V., Goykhberg, J., Crowe, M., Diao, J., Kozlov, M.M., Chernomordik, L.V., Millay, D.P., 2018. Myomaker and Myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion. Dev. Cell 46, 767-780.e7.
|
Li, M., Hromowyk, K.J., Amacher, S.L., Currie, P.D., 2017. Muscular dystrophy modeling in zebrafish, in: Methods in Cell Biology. Elsevier, pp. 347-380.
|
Li, S., Wen, H., Du, S., 2020. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J. 34, 1378-1397.
|
Long, T., Zhang, Y., Donnelly, L., Li, H., Pien, Y.-C., Liu, N., Olson, E.N., Li, X., 2023. Cryo-EM structures of Myomaker reveal a molecular basis for myoblast fusion. Nat. Struct. Mol. Biol. 30, 1746-1754.
|
Luo, Z., Shi, J., Pandey, P., Ruan, Z.-R., Sevdali, M., Bu, Y., Lu, Y., Du, S., Chen, E.H., 2022. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev. Cell 57, 1582-1597.e6.
|
Mendieta-Serrano, M.A., Dhar, S., Ng, B.H., Narayanan, R., Lee, J.J.Y., Ong, H.T., Toh, P.J.Y., Rollin, A., Roy, S., Saunders, T.E., 2022. Slow muscles guide fast myocyte fusion to ensure robust myotome formation despite the high spatiotemporal stochasticity of fusion events. Dev. Cell 57, 2095-2110.e5.
|
Millay, D.P., 2022. Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations. Exp. Cell Res. 415, 113134.
|
Millay, D.P., Gamage, D.G., Quinn, M.E., Min, Y.-L., Mitani, Y., Bassel-Duby, R., Olson, E.N., 2016. Structure-function analysis of myomaker domains required for myoblast fusion. Proc. Natl. Acad. Sci. U. S. A. 113, 2116-2121.
|
Millay, D.P., O’Rourke, J.R., Sutherland, L.B., Bezprozvannaya, S., Shelton, J.M., Bassel-Duby, R., Olson, E.N., 2013. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499, 301-305.
|
Millay, D.P., Sutherland, L.B., Bassel-Duby, R., Olson, E.N., 2014. Myomaker is essential for muscle regeneration. Genes Dev. 28, 1641-1646.
|
Mitani, Y., Vagnozzi, R.J., Millay, D.P., 2017. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. FASEB J. 31, 400-411.
|
Morsch, M., Radford, R., Lee, A., Don, E.K., Badrock, A.P., Hall, T.E., Cole, N.J., Chung, R., 2015. In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord. Front. Cell. Neurosci. 9.
|
Ono, Y., Yu, W., Jackson, H.E., Parkin, C.A., Ingham, P.W., 2015. Adaxial cell migration in the zebrafish embryo is an active cell autonomous property that requires the Prdm1a transcription factor. Differentiation 89, 77-86.
|
Petrany, M.J., Millay, D.P., 2019. Cell fusion: merging membranes and making muscle. Trends Cell Biol. 29, 964-973.
|
Petrany, M.J., Song, T., Sadayappan, S., Millay, D.P., 2020. Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight 5, e136095.
|
Pomerantz, J.H., Mukherjee, S., Palermo, A.T., Blau, H.M., 2009. Reprogramming to a muscle fate by fusion recapitulates differentiation. J. Cell Sci. 122, 1045-1053.
|
Powell, G.T., Wright, G.J., 2011. Jamb and Jamc are essential for vertebrate myocyte fusion. PLoS Biol. 9, e1001216.
|
Quinn, M.E., Goh, Q., Kurosaka, M., Gamage, D.G., Petrany, M.J., Prasad, V., Millay, D.P., 2017. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat. Commun. 8, 15665.
|
Ramirez-Martinez, A., Zhang, Y., van den Boogaard, M.-J., McAnally, J.R., Rodriguez-Caycedo, C., Chai, A.C., Chemello, F., Massink, M.P.G., Cuppen, I., Elferink, M.G., et al., 2022. Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J. Clin. Invest. 132, e159002.
|
Roy, S., Wolff, C., Ingham, P.W., 2001. The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev. 15, 1563-1576.
|
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675.
|
Shi, J., Bi, P., Pei, J., Li, H., Grishin, N.V., Bassel-Duby, R., Chen, E.H., Olson, E.N., 2017. Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 114, 11950-11955.
|
Shi, J., Cai, M., Si, Y., Zhang, J., Du, S., 2018. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adipocyte infiltration in zebrafish skeletal muscle. Hum. Mol. Genet. 27, 3542-3554.
|
Smith, S.J., Horstick, E.J., Davidson, A.E., Dowling, J., 2015. Analysis of zebrafish larvae skeletal muscle integrity with evans blue dye. J. Vis. Exp. 53183.
|
Srinivas, B.P., Woo, J., Leong, W.Y., Roy, S., 2007. A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat. Genet. 39, 781-786.
|
Thisse, C., Thisse, B., 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69.
|
Urasaki, A., Morvan, G., Kawakami, K., 2006. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639-649.
|
Witcher, P.C., Sun, C., Millay, D.P., 2023. Expression of Myomaker and Myomerger in myofibers causes muscle pathology. Skelet. Muscle 13, 8.
|
Wu, P., Yong, P., Zhang, Z., Xu, R., Shang, R., Shi, J., Zhang, J., Bi, P., Chen, E., Du, S., 2022. Loss of myomixer results in defective myoblast fusion, impaired muscle growth, and severe myopathy in zebrafish. Mar. Biotechnol. 24, 1023-1038.
|
Xing, L., Quist, T.S., Stevenson, T.J., Dahlem, T.J., Bonkowsky, J.L., 2014. Rapid and efficient zebrafish genotyping using PCR with high-resolution melt analysis. J. Vis. Exp. 5, e51138.
|
Zaina, S., del Pilar Valencia-Morales, M., Tristan-Flores, F.E., Lund, G., 2013. Nuclear reprogramming and its role in vascular smooth muscle cells. Curr. Atheroscler. Rep. 15, 352.
|
Zhang, H., Shang, R., Kim, K., Zheng, W., Johnson, C.J., Sun, L., Niu, X., Liu, Liang, Zhou, J., Liu, Lingshu, et al., 2022. Evolution of a chordate-specific mechanism for myoblast fusion. Sci. Adv. 8, eadd2696.
|
Zhang, H., Wen, J., Bigot, A., Chen, J., Shang, R., Mouly, V., Bi, P., 2020. Human myotube formation is determined by MyoD-Myomixer/Myomaker axis. Sci. Adv. 6, eabc4062.
|
Zhang, Q., Vashisht, A.A., O’Rourke, J., Corbel, S.Y., Moran, R., Romero, A., Miraglia, L., Zhang, J., Durrant, E., Schmedt, C., et al., 2017. The microprotein Minion controls cell fusion and muscle formation. Nat. Commun. 8, 15664.
|
Zhang, W., Roy, S., 2017a. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo. Dev. Biol. 423, 24-33.
|
[1] | De-Li Shi. Interplay of RNA-binding proteins controls germ cell development in zebrafish[J]. Journal of Genetics and Genomics, 2024, 51(9): 889-899. doi: 10.1016/j.jgg.2024.06.020 |
[2] | Ting Li, Tursunjan Aziz, Guangyuan Li, Lin Zhang, Jihua Yao, Shunji Jia. A zebrafish tufm mutant model for the COXPD4 syndrome of aberrant mitochondrial function[J]. Journal of Genetics and Genomics, 2024, 51(9): 922-933. doi: 10.1016/j.jgg.2024.05.009 |
[3] | Ji-Won Park, Tae-Ik Choi, Tae-Yoon Kim, Yu-Ri Lee, Dilan Wellalage Don, Jaya K. George-Abraham, Laurie A. Robak, Cristina C. Trandafir, Pengfei Liu, Jill A. Rosenfeld, Tae Hyeong Kim, Florence Petit, Yoo-Mi Kim, Chong Kun Cheon, Yoonsung Lee, Cheol-Hee Kim. RFC2 may contribute to the pathogenicity of Williams syndrome revealed in a zebrafish model[J]. Journal of Genetics and Genomics, 2024, 51(12): 1389-1403. doi: 10.1016/j.jgg.2024.09.016 |
[4] | Yayue Chen, Delai Huang, Aixuan Xie, Ying Shan, Shuyi Zhao, Ce Gao, Jun Chen, Hui Shi, Weihuan Fang, Jinrong Peng. Capn3b-deficient zebrafish model reveals a key role of autoimmune response in LGMDR1[J]. Journal of Genetics and Genomics, 2024, 51(12): 1375-1388. doi: 10.1016/j.jgg.2024.09.011 |
[5] | Hua Cheng, Ziyan Guo, Xiaoyu Zhang, Xiao-Jin Wang, Zizhang Li, Wen-Wen Huo, Hong-Cheng Zhong, Xiao-Jian Li, Xiang-Wen Wu, Wen-Hao Li, Zhuo-Wen Chen, Tian-Chi Wu, Xiang-Feng Gan, Bei-Long Zhong, Vassily A. Lyubetsky, Leonid Yu Rusin, Junnan Yang, Qiyi Zhao, Qing-Dong Cao, Jian-Rong Yang. Lack of evolutionary convergence in multiple primary lung cancer suggests insufficient specificity of personalized therapy[J]. Journal of Genetics and Genomics, 2023, 50(5): 330-340. doi: 10.1016/j.jgg.2022.11.005 |
[6] | Chaoying Wu, Wenfeng Zhang, Yiyu Luo, Chaoqing Cheng, Xinjuan Wang, Yan Jiang, Shuang Li, Lingfei Luo, Yun Yang. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis[J]. Journal of Genetics and Genomics, 2023, 50(12): 1004-1013. doi: 10.1016/j.jgg.2023.05.013 |
[7] | Xuerui Lu, Shixi Shi, Chong Wu, Xueao Zheng, Chenkun Yang, Jie Luo, Shunping Yan. The shikimate pathway regulates programmed cell death[J]. Journal of Genetics and Genomics, 2022, 49(10): 943-951. doi: 10.1016/j.jgg.2022.02.001 |
[8] | Wenjuan Pu, Ximeng Han, Mingjun Zhang, Yan Li, Xiuzhen Huang, Lingjuan He, Bin Zhou. Resident endothelial cells generate hepatocytes through cell fusion in adult mouse liver[J]. Journal of Genetics and Genomics, 2020, 47(4): 225-228. doi: 10.1016/j.jgg.2020.03.006 |
[9] | Yuanyuan Liu, Chong Zhang, Yanjun Zhang, Siyao Lin, De-Li Shi, Ming Shao. Highly efficient genome editing using oocyte-specific zcas9 transgenic zebrafish[J]. Journal of Genetics and Genomics, 2018, 45(9): 509-512. doi: 10.1016/j.jgg.2018.05.004 |
[10] | Zhiguo Wu, Yan Yang, Gai Huang, Jing Lin, Yuying Xia, Yuxian Zhu. Cotton functional genomics reveals global insight into genome evolution and fiber development[J]. Journal of Genetics and Genomics, 2017, 44(11): 511-518. doi: 10.1016/j.jgg.2017.09.009 |
[11] | Jiying Zhao, Pengcheng Liu, Chunrong Li, Yanyan Wang, Lequn Guo, Guanghuai Jiang, Wenxue Zhai. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice[J]. Journal of Genetics and Genomics, 2017, 44(2): 107-118. doi: 10.1016/j.jgg.2016.12.005 |
[12] | Zhu Song, Xiaoli Zhang, Shuo Jia, Pamela C. Yelick, Chengtian Zhao. Zebrafish as a Model for Human Ciliopathies[J]. Journal of Genetics and Genomics, 2016, 43(3): 107-120. doi: 10.1016/j.jgg.2016.02.001 |
[13] | Jianmeng Cao, Shangqi Li, Ming Shao, Xiaoning Cheng, Zhigang Xu, Deli Shi. The PDZ-Containing Unconventional Myosin XVIIIA Regulates Embryonic Muscle Integrity in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(8): 417-428. doi: 10.1016/j.jgg.2014.06.008 |
[14] | Yun-Mi Jeong, Tae-Eun Jin, Jung-Hwa Choi, Mi-Sun Lee, Hyun-Taek Kim, Kyu-Seok Hwang, Doo-Sang Park, Hyun-Woo Oh, Joong-Kook Choi, Vladimir Korzh, Melitta Schachner, Kwan-Hee You, Cheol-Hee Kim. Induction of clusterin Expression by Neuronal Cell Death in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(11): 583-589. doi: 10.1016/j.jgg.2014.08.007 |
[15] | Qilin Gu, Xiaojie Yang, Xiaozhen He, Qing Li, Zongbin Cui. Generation and Characterization of a Transgenic Zebrafish Expressing the Reverse Tetracycline Transactivator[J]. Journal of Genetics and Genomics, 2013, 40(10): 523-531. doi: 10.1016/j.jgg.2013.06.008 |
[16] | Ya-juan Li, Bing Hu. Establishment of Multi-Site Infection Model in Zebrafish Larvae for Studying Staphylococcus aureus Infectious Disease[J]. Journal of Genetics and Genomics, 2012, 39(9): 521-534. doi: 10.1016/j.jgg.2012.07.006 |
[17] | Haozhen Nie, Yingying Wu, Chunpeng Yao, Dingzhong Tang. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis[J]. Journal of Genetics and Genomics, 2011, 38(4): 137-148. doi: 10.1016/j.jgg.2011.03.001 |
[18] | Jianhui Ma, Qian Sun, Ruifang Mi, Hongbing Zhang. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling[J]. Journal of Genetics and Genomics, 2011, 38(11): 533-537. doi: 10.1016/j.jgg.2011.10.002 |
[19] | Yonghua Wang, Lixia Wang, Zhaohui Wang. Transgenic analyses of TGIF family proteins in Drosophila imply their role in cell growth[J]. Journal of Genetics and Genomics, 2008, 35(8): 457-465. doi: 10.1016/S1673-8527(08)60063-6 |
[20] | David S. Skibbe, Xiujuan Wang, Lisa A. Borsuk, Daniel A. Ashlock, Dan Nettleton, Patrick S. Schnable. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death[J]. Journal of Genetics and Genomics, 2008, 35(10): 603-616. doi: 10.1016/S1673-8527(08)60081-8 |