[1] |
Adams, K.N., Takaki, K., Connolly, L.E. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism Cell, 145 (2011),pp. 39-53
|
[2] |
Archer, G.L. Clin. Infect. Dis., 26 (1998),pp. 1179-1181
|
[3] |
Benard, E.L., van der Sar, A.M., Ellett, F. et al. Infection of zebrafish embryos with intracellular bacterial pathogens J. Vis. Exp. (2012),pp. 3781-3791
|
[4] |
Brannon, M.K., Davis, J.M., Mathias, J.R. et al. Cell. Microbiol., 11 (2009),pp. 755-768
|
[5] |
Clatworthy, A.E., Lee, J.S.W., Leibman, M. et al. Infect. Immun., 77 (2009),pp. 1293-1303
|
[6] |
Colucci-Guyon, E., Tinevez, J.Y., Renshaw, S.A. et al. J. Cell Sci., 124 (2011),pp. 3053-3059
|
[7] |
Cosma, C.L., Humbert, O., Ramakrishnan, L. Superinfecting mycobacteria home to established tuberculous granulomas Nat. Immunol., 5 (2004),pp. 828-835
|
[8] |
Cosma, C.L., Swaim, L.E., Volkman, H. et al. Curr. Protoc. Microbiol (2006)
|
[9] |
Davis, J.M., Clay, H., Lewis, J.L. et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos Immunity, 17 (2002),pp. 693-702
|
[10] |
Ding, L., Yan, X., Sun, X. et al. Regulation of zebrafish development by microRNAs Hereditas, 33 (2011),pp. 1179-1184
|
[11] |
Drabkin, D.L. Metabolism of the hemin chromoproteins Physiol. Rev., 31 (1951),pp. 345-431
|
[12] |
Entenza, J.M., Vouillamoz, J., Glauser, M.P. et al. Efficacy of trovafloxacin in treatment of experimental staphylococcal or streptococcal endocarditis Antimicrob. Agents and Chemother., 43 (1999),pp. 77-84
|
[13] |
Gray, C., Loynes, C.A., Whyte, M.K. et al. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish Thromb. Haemost., 105 (2011),pp. 811-819
|
[14] |
Herbomel, P., Thisse, B., Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo Development, 126 (1999),pp. 3735-3745
|
[15] |
Hubscher, J., McCallum, N., Sifri, C.D. et al. FEMS Microbiol. Lett., 295 (2009),pp. 251-260
|
[16] |
Isogai, S., Horiguchi, M., Weinstein, B.M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development Dev. Biol., 230 (2001),pp. 278-301
|
[17] |
Lam, S.H., Chua, H.L., Gong, Z. et al. Dev. Comp. Immunol., 28 (2004),pp. 9-28
|
[18] |
Le Guyader, D., Redd, M.J., Colucci-Guyon, E. et al. Origins and unconventional behavior of neutrophils in developing zebrafish Blood, 111 (2008),pp. 132-141
|
[19] |
Lesley, R., Ramakrishnan, L. Insights into early mycobacterial pathogenesis from the zebrafish Curr. Opin. Microbiol., 11 (2008),pp. 277-283
|
[20] |
Levraud, J.P., Colucci-Guyon, E., Redd, M.J. et al. Methods Mol. Biol., 415 (2008),pp. 337-363
|
[21] |
Levraud, J.P., Disson, O., Kissa, K. et al. Infect. Immun., 77 (2009),pp. 3651-3660
|
[22] |
Li, L., Yan, B., Shi, Y.Q. et al. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration J. Biol. Chem., 287 (2012),pp. 25353-25360
|
[23] |
Lin, B., Chen, S.W., Cao, Z. et al. Mol. Immunol., 44 (2007),pp. 295-301
|
[24] |
Ling, S.H., Wang, X.H., Xie, L. et al. Microbiology, 146 (2000),pp. 7-19
|
[25] |
Liu, Z.Q., Deng, G.M., Foster, S. et al. Staphylococcal peptidoglycans induce arthritis Arthritis Res., 3 (2001),pp. 375-380
|
[26] |
Mathias, J.R., Perrin, B.J., Liu, T.X. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish J. Leukoc. Biol., 80 (2006),pp. 1281-1288
|
[27] |
Mazmanian, S.K., Skaar, E.P., Gaspar, A.H. et al. Science, 299 (2003),pp. 906-909
|
[28] |
Meijer, A.H., Spaink, H.P. Host-pathogen interactions made transparent with the zebrafish model Curr. Drug Targets, 12 (2011),pp. 1000-1017
|
[29] |
Meijer, A.H., Van der Sar, A.M., Cunha, C. et al. Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish Dev. Comp. Immunol., 32 (2008),pp. 36-49
|
[30] |
Meijer, A.H., Verbeek, F.J., Salas-Vidal, E. et al. Mol. Immunol., 42 (2005),pp. 1185-1203
|
[31] |
Miller, J.D., Neely, M.N. Zebrafish as a model host for streptococcal pathogenesis Acta Trop., 91 (2004),pp. 53-68
|
[32] |
Neely, M.N., Pfeifer, J.D., Caparon, M. Streptococcus-zebrafish model of bacterial pathogenesis Infect. Immun., 70 (2002),pp. 3904-3914
|
[33] |
Novoa, B., Figueras, A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases Adv. Exp. Med. Biol., 946 (2012),pp. 253-275
|
[34] |
Novoa, B., Romero, A., Mulero, V. et al. Vaccine, 24 (2006),pp. 5806-5816
|
[35] |
O'Toole, R., Von Hofsten, J., Rosqvist, R. et al. Microb. Pathog., 37 (2004),pp. 41-46
|
[36] |
Oliver, C.E., Beier, R.C., Hume, M.E. et al. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures Anaerobe, 16 (2010),pp. 106-113
|
[37] |
Phelps, H.A., Runft, D.L., Neely, M.N. Adult zebrafish model of streptococcal infection Curr. Protoc. Microbiol. (2009)
|
[38] |
Pishchany, G., Dickey, S.E., Skaar, E.P. Infect. Immun., 77 (2009),pp. 2624-2634
|
[39] |
Pishchany, G., McCoy, A.L., Torres, V.J. et al. Cell Host Microbe, 8 (2010),pp. 544-550
|
[40] |
Prajsnar, T.K., Cunliffe, V.T., Foster, S.J. et al. Cell. Microbiol., 10 (2008),pp. 2312-2325
|
[41] |
Pressley, M.E., Phelan, P.E., Witten, P.E. et al. Dev. Comp. Immunol., 29 (2005),pp. 501-513
|
[42] |
Qi, F., Lin, S. Development of retrovirus-mediaten insertional mutagenesis in zebrafish and its application in saturation mutagenesis and gene screening Hereditas, 31 (2004),pp. 750-757
|
[43] |
Renshaw, S.A., Loynes, C.A., Trushell, D.M. et al. A transgenic zebrafish model of neutrophilic inflammation Blood, 108 (2006),pp. 3976-3988
|
[44] |
Renshaw, S.A., Trede, N.S. A model 450 million years in the making: zebrafish and vertebrate immunity Dis. Model. Mech., 5 (2012),pp. 38-47
|
[45] |
Rhodes, J., Hagen, A., Hsu, K. et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish Dev. Cell, 8 (2005),pp. 97-108
|
[46] |
Tao, T., Peng, J. Liver development in zebrafish J. Genet. Genomics, 36 (2009),pp. 325-334
|
[47] |
Torres, V.J., Attia, A.S., Mason, W.J. et al. Infect. Immun., 78 (2010),pp. 1618-1628
|
[48] |
Torres, V.J., Pishchany, G., Humayun, M. et al. J. Bacteriol., 188 (2006),pp. 8421-8429
|
[49] |
Traver, D., Herbomel, P., Patton, E.E. et al. The zebrafish as a model organism to study development of the immune system Adv. Immunol., 81 (2003),pp. 253-330
|
[50] |
Trede, N.S., Langenau, D.M., Traver, D. et al. The use of zebrafish to understand immunity Immunity, 20 (2004),pp. 367-379
|
[51] |
van der Sar, A.M., Musters, R.J.P., van Eeden, F.J.M. et al. Cell. Microbiol., 5 (2003),pp. 601-611
|
[52] |
Vojtech, L.N., Sanders, G.E., Conway, C. et al. Host immune response and acute disease in a zebrafish model of Francisella pathogenesis Infect. Immun., 77 (2009),pp. 914-925
|
[53] |
Volkman, H.E., Pozos, T.C., Zheng, J. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium Science, 327 (2010),pp. 466-469
|
[54] |
Weerdenburg, E.M., Abdallah, A.M., Mitra, S. et al. ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish Cell Microbiol., 14 (2012),pp. 728-739
|
[55] |
Wu, Y.P., Xiong, Q., Zhang, G.X. et al. The research progress of zebrafish gene engineering Acta Genet. Sin., 31 (2004),pp. 1167-1174
|
[56] |
Xiong, M.H., Bao, Y., Yang, X.Z. et al. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery J. Am. Chem. Soc., 134 (2012),pp. 4355-4362
|
[57] |
Xu, X.P., Zhang, L.C., Weng, S.P. et al. Virology, 376 (2008),pp. 1-12
|
[58] |
Zhang, Y., Chen, F., Deng, M. Research progress of zebrafish as a model system for hematological neoplasms Hereditas, 31 (2009),pp. 889-895
|