5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 4
Apr.  2011
Turn off MathJax
Article Contents

Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis

doi: 10.1016/j.jgg.2011.03.001
More Information
  • Corresponding author: E-mail address: dztang@genetics.ac.cn (Dingzhong Tang)
  • Received Date: 2011-01-26
  • Accepted Date: 2011-03-03
  • Rev Recd Date: 2011-03-02
  • Available Online: 2011-03-23
  • Publish Date: 2011-04-20
  • EDR2 is a negative regulator of the defense response and cell death in Arabidopsis. Loss-of-function of EDR2 leads to enhanced resistance to powdery mildew. To identify new components in the EDR2 signal transduction pathway, mutations that suppress edr2 resistant phenotypes were screened. Three mutants, edts5-1, edts5-2 and edts5-3 (edr two suppressor 5), were identified. The EDTS5 gene was identified by map-based cloning and previously was shown to encode an aminotransferase (ALD1). Therefore we renamed these three alleles ald1-10, ald1-11 and ald1-12, respectively. Mutations in ALD1 suppressed all edr2-mediated phenotypes, including powdery mildew resistance, programmed cell death and ethylene-induced senescence. Accumulation of hydrogen peroxide in edr2 was also suppressed by ald1 mutation. The expression of defense-related genes was up-regulated in the edr2 mutant, and the up-regulation of those genes in edr2 was suppressed in the edr2/ald1 double mutant. The ald1 single mutant displayed delayed ethylene-induced senescence. In addition, ald1 mutation suppressed edr1-mediated powdery mildew resistance, but could not suppress the edr1/edr2 double-mutant phenotype. These data demonstrate that ALD1 plays important roles in edr2-mediated defense responses, and senescence and revealed a crosstalk between ethylene and salicylic acid signaling mediated by ALD1 and EDR2.
  • loading
  • [1]
    Adam, L., Somerville, S.C. Plant J., 9 (1996),pp. 341-356
    [2]
    Bednarek, P., Pislewska-Bednarek, M., Svatos, A. et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense Science, 323 (2009),pp. 101-106
    [3]
    Boutrot, F., Segonzac, C., Chang, K.N. et al. Proc. Nat. Acad. Sci. U.S.A., 107 (2010),pp. 14502-14507
    [4]
    Cao, H., Glazebrook, J., Clarke, J.D. et al. Cell, 88 (1997),pp. 57-63
    [5]
    Chen, H., Xue, L., Chintamanani, S. et al. Plant Cell, 21 (2009),pp. 2527-2540
    [6]
    Clay, N.K., Adio, A.M., Denoux, C. et al. Science, 323 (2009),pp. 95-101
    [7]
    Clough, S.J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
    [8]
    Collins, N.C., Thordal-Christensen, H., Lipka, V. et al. SNARE-protein-mediated disease resistance at the plant cell wall Nature, 425 (2003),pp. 973-977
    [9]
    Consonni, C., Humphry, M.E., Hartmann, H.A. et al. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis Nat. Genet., 38 (2006),pp. 716-720
    [10]
    Falk, A., Feys, B.J., Frost, L.N. et al. Proc. Nat. Acad. Sci. U.S.A., 96 (1999),pp. 3292-3297
    [11]
    Ferrari, S., Plotnikova, J.M., De Lorenzo, G. et al. Plant J., 35 (2003),pp. 193-205
    [12]
    Frye, C.A., Innes, R.W. Plant Cell, 10 (1998),pp. 947-956
    [13]
    Frye, C.A., Tang, D., Innes, R.W. Negative regulation of defense responses in plants by a conserved MAPKK kinase Proc. Nat. Acad. Sci. U.S.A., 98 (2001),pp. 373-378
    [14]
    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens Annu. Rev. Phytopathol., 43 (2005),pp. 205-227
    [15]
    Glazebrook, J., Zook, M., Mert, F. et al. Genetics, 146 (1997),pp. 381-392
    [16]
    Greenberg, J.T. Programmed cell death in plant-pathogen interactions Annu. Rev. Plant Physiol. Plant Mol. Biol., 48 (1997),pp. 525-545
    [17]
    Greenberg, J.T., Silverman, F.P., Liang, H. Genetics, 156 (2000),pp. 341-350
    [18]
    Jacobs, A.K., Lipka, V., Burton, R.A. et al. Plant Cell, 15 (2003),pp. 2503-2513
    [19]
    Kessler, S.A., Shimosato-Asano, H., Keinath, N.F. et al. Conserved molecular components for pollen tube reception and fungal invasion Science, 330 (2010),pp. 968-971
    [20]
    Koch, E., Slusarenko, A. Plant Cell, 2 (1990),pp. 437-445
    [21]
    Kwon, C., Neu, C., Pajonk, S. et al. Co-option of a default secretory pathway for plant immune responses Nature, 451 (2008),pp. 835-840
    [22]
    Liang, H., Yao, N., Song, J.T. et al. Ceramides modulate programmed cell death in plants Genes Dev., 17 (2003),pp. 2636-2641
    [23]
    Lipka, V., Dittgen, J., Bednarek, P. et al. Science, 310 (2005),pp. 1180-1183
    [24]
    Loake, G., Grant, M. Salicylic acid in plant defence–the players and protagonists Curr. Opin. Plant Biol., 10 (2007),pp. 466-472
    [25]
    Lu, H., Salimian, S., Gamelin, E. et al. Plant J., 58 (2009),pp. 401-412
    [26]
    Nishimura, M.T., Stein, M., Hou, B.H. et al. Loss of a callose synthase results in salicylic acid-dependent disease resistance Science, 301 (2003),pp. 969-972
    [27]
    Ryals, J., Weymann, K., Lawton, K. et al. Plant Cell, 9 (1997),pp. 425-439
    [28]
    Schulze-Lefert, P., Vogel, J. Closing the ranks to attack by powdery mildew Trends Plant Sci., 5 (2000),pp. 343-348
    [29]
    Song, J.T., Lu, H., Greenberg, J.T. Plant Cell, 16 (2004),pp. 353-366
    [30]
    Song, J.T., Lu, H., McDowell, J.M. et al. Plant J., 40 (2004),pp. 200-212
    [31]
    Stein, M., Dittgen, J., Sanchez-Rodriguez, C. et al. Plant Cell, 18 (2006),pp. 731-746
    [32]
    Stone, S.L., Williams, L.A., Farmer, L.M. et al. Plant Cell, 18 (2006),pp. 3415-3428
    [33]
    Tang, D., Innes, R.W. Plant J., 32 (2002),pp. 975-983
    [34]
    Tang, D., Christiansen, K.M., Innes, R.W. Plant Physiol., 138 (2005),pp. 1018-1026
    [35]
    Tang, D., Ade, J., Frye, C.A. et al. Plant J., 44 (2005),pp. 245-257
    [36]
    Tang, D., Ade, J., Frye, C.A. et al. Plant J., 47 (2006),pp. 75-84
    [37]
    van Engelen, F.A., Molthoff, J.W., Conner, A.J. et al. pBINPLUS: an improved plant transformation vector based on pBIN19 Transgenic Res., 4 (1995),pp. 288-290
    [38]
    Vogel, J., Somerville, S. Proc. Natl. Acad. Sci. U.S.A., 97 (2000),pp. 1897-1902
    [39]
    Vogel, J.P., Raab, T.K., Schiff, C. et al. Plant Cell, 14 (2002),pp. 2095-2106
    [40]
    Vogel, J.P., Raab, T.K., Somerville, C.R. et al. Plant J., 40 (2004),pp. 968-978
    [41]
    Vorwerk, S., Schiff, C., Santamaria, M. et al. BMC Plant Biol., 7 (2007),p. 35
    [42]
    Wang, W., Wen, Y., Berkey, R. et al. Plant Cell, 21 (2009),pp. 2898-2913
    [43]
    Wang, W., Yang, X., Tangchaiburana, S. et al. Plant Cell, 20 (2008),pp. 3163-3179
    [44]
    Wawrzynska, A., Christiansen, K.M., Lan, Y. et al. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling Plant Physiol., 148 (2008),pp. 1510-1522
    [45]
    Wildermuth, M.C., Dewdney, J., Wu, G. et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence Nature, 414 (2001),pp. 562-565
    [46]
    Xiao, S., Brown, S., Patrick, E. et al. Plant Cell, 15 (2003),pp. 33-45
    [47]
    Xiao, S., Ellwood, S., Calis, O. et al. Science, 291 (2001),pp. 118-120
    [48]
    Yang, X., Wang, W., Coleman, M. et al. Plant J., 60 (2009),pp. 539-550
    [49]
    Yao, N., Eisfelder, B.J., Marvin, J. et al. Plant J., 40 (2004),pp. 596-610
    [50]
    Zhou, N., Tootle, T.L., Tsui, F. et al. Plant Cell, 10 (1998),pp. 1021-1030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return