Abstract:
Synthesized allopolyploids are valuable materials for comparative analyses of two or more distinct genomes, such as the expression changes (activation, inactivation or differential expression) of orthologous genes following allopolyploidization. CENH3 is a centromere- specific histone H3 variant and has been regarded as a central component in kinetochore formation and centromere function. In this study, interspecific hybrids ofOryza genus (AA × CC, AA × CCDD) and their backcross progenies were produced, and the genome constitutions were identified as AC, ACC, ACD, AACD, or AA(CD) by Genomic in situ hybridization (GISH). We further cloned and sequenced the CENH3 genes from O. sativa (AA), O. officinalis (CC) and O. latifolia (CCDD). Sequencing of RT-PCR products revealed that CENH3_C2 and CENH3_D, the two CENH3 alleles from O. latifolia, showed polymophism in several sites, while CENH3_C2 and CENH3_C1 from O. officinalis were different at only two amino acids positions. Moreover, we found that the CENH3 genes from both parents are expressed in interspecific hybrids and their progenies. Specifically, based on our cDNA sequencing data, the ratio of expression level between CENH3_A and CENH3_C1 was approximately 1 in AC and 0.5 in ACC genomes, respectively. As a result, the CENH3 expression patterns shed more light on the inter-coordination between varied centromeric DNA sequences and highly conserved kinetochore protein in synthesized allopolyploids of Oryza genus.