5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 10
Oct.  2010
Turn off MathJax
Article Contents

Identification and expression analysis of mical family genes in zebrafish

doi: 10.1016/S1673-8527(09)60086-2
More Information
  • Corresponding author: E-mail address: bzhang@pku.edu.cn (Bo Zhang)
  • Received Date: 2010-05-27
  • Accepted Date: 2010-07-06
  • Rev Recd Date: 2010-07-01
  • Available Online: 2010-10-27
  • Publish Date: 2010-10-20
  • Mical (molecule interacting with CasL) represent a conserved family of cytosolic multidomain proteins that has been shown to be associated with a variety of cellular processes, including axon guidance, cell movement, cell-cell junction formation, vesicle trafficking and cancer cell metastasis. However, the expression and function of these genes during embryonic development have not been comprehensively characterized, especially in vertebrate species, although some limited in vivo studies have been carried out in neural and musculature systems of Drosophila and in neural systems of vertebrates. So far, no mical family homologs have been reported in zebrafish, an ideal vertebrate model for the study of developmental processes. Here we report eight homologs of mical family genes in zebrafish and their expression profiles during embryonic development. Consistent with the findings in Drosophila and mammals, most zebrafish mical family genes display expression in neural and musculature systems. In addition, five mical homologs are detected in heart, and one, micall2a, in blood vessels. Our data established an important basis for further functional studies of mical family genes in zebrafish, and suggest a possible role for mical genes in cardiovascular development.
  • loading
  • [1]
    Ashida, S., Furihata, M., Katagiri, T. et al. Expression of novel molecules, MICAL2-PV (MICAL2 prostate cancer variants), increases with high Gleason score and prostate cancer progression Clin. Cancer Res., 12 (2006),pp. 2767-2773
    [2]
    Beuchle, D., Schwarz, H., Langegger, M. et al. Mech. Dev., 124 (2007),pp. 390-406
    [3]
    Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap Evolution, 39 (1985),pp. 783-791
    [4]
    Finn, R.D., Mistry, J., Tate, J. et al. The Pfam protein families database Nucleic Acids Res, 38 (2010),pp. D211-D222
    [5]
    Fischer, J., Weide, T., Barnekow, A. The MICAL proteins and rab1: a possible link to the cytoskeleton? Biochem. Biophys. Res. Commun., 328 (2005),pp. 415-423
    [6]
    Fukami, K., Furuhashi, K., Inagaki, M. et al. Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function Nature, 359 (1992),pp. 150-152
    [7]
    Gimona, M., Djinovic-Carugo, K., Kranewitter, W.J. et al. Functional plasticity of CH domains FEBS Lett., 513 (2002),pp. 98-106
    [8]
    Guillou, F., Roger, E., Mone, Y. et al. Mol. Biochem. Parasitol., 155 (2007),pp. 45-56
    [9]
    Hung, R.J., Yazdani, U., Yoon, J. et al. Mical links semaphorins to F-actin disassembly Nature, 463 (2010),pp. 823-827
    [10]
    Jones, D.T., Taylor, W.R., Thornton, J.M. The rapid generation of mutation data matrices from protein sequences Comput. Appl. Biosci., 8 (1992),pp. 275-282
    [11]
    Jowett, T., Lettice, L. Trends Genet., 10 (1994),pp. 73-74
    [12]
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R. et al. Stages of embryonic development of the zebrafish Dev. Dyn., 203 (1995),pp. 253-310
    [13]
    Kirilly, D., Gu, Y., Huang, Y. et al. A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning Nat. Neurosci., 12 (2009),pp. 1497-1506
    [14]
    Kolk, S.M., Pasterkamp, R.J. MICAL flavoprotein monooxygenases: structure, function and role in semaphorin signaling Adv. Exp. Med. Biol., 600 (2007),pp. 38-51
    [15]
    Nakatsuji, H., Nishimura, N., Yamamura, R. et al. Involvement of actinin-4 in the recruitment of JRAB/MICAL-L2 to cell-cell junctions and the formation of functional tight junctions Mol. Cell. Biol., 28 (2008),pp. 3324-3335
    [16]
    Nishimura, N., Sasaki, T. Cell-surface biotinylation to study endocytosis and recycling of occludin Methods Mol. Biol., 440 (2008),pp. 89-96
    [17]
    Nishimura, N., Sasaki, T. Identification and characterization of JRAB/MICAL-L2, a junctional Rab13-binding protein Methods Enzymol., 438 (2008),pp. 141-153
    [18]
    Nishimura, N., Sasaki, T. Rab family small G proteins in regulation of epithelial apical junctions Front. Biosci., 14 (2009),pp. 2115-2129
    [19]
    Pasterkamp, R.J., Dai, H.N., Terman, J.R. et al. MICAL flavoprotein monooxygenases: expression during neural development and following spinal cord injuries in the rat Mol. Cell. Neurosci., 31 (2006),pp. 52-69
    [20]
    Postlethwait, J.H., Woods, I.G., Ngo-Hazelett, P. et al. Zebrafish comparative genomics and the origins of vertebrate chromosomes Genome Res., 10 (2000),pp. 1890-1902
    [21]
    Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol., 4 (1987),pp. 406-425
    [22]
    Sakane, A., Honda, K., Sasaki, T. Rab13 regulates neurite outgrowth in PC12 cells through its effector protein, JRAB/MICAL-L2 Mol. Cell. Biol., 30 (2010),pp. 1077-1087
    [23]
    Sharma, M., Giridharan, S.S. Panapakkam, Rahajeng, J., Naslavsky, N. et al. MICAL-L1 links EHD1 to tubular recycling endosomes and regulates receptor recycling Mol. Bio. Cell., 24 (2009),pp. 5181-5194
    [24]
    Sun, H., Dai, H., Zhang, J. et al. Solution structure of calponin homology domain of human MICAL-1 J. Biomol. NMR, 36 (2006),pp. 295-300
    [25]
    Suzuki, T., Nakamoto, T., Ogawa, S. et al. MICAL, a novel CasL interacting molecule, associates with vimentin J. Biol. Chem., 277 (2002),pp. 14933-14941
    [26]
    Tamura, K., Dudley, J., Nei, M. et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
    [27]
    Terai, T., Nishimura, N., Kanda, I. et al. JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin Mol. Biol. Cell., 17 (2006),pp. 2465-2475
    [28]
    Terman, J.R., Mao, T., Pasterkamp, R.J. et al. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion Cell, 109 (2002),pp. 887-900
    [29]
    Weide, T., Teuber, J., Bayer, M. et al. MICAL-1 isoforms, novel rab1 interacting proteins Biochem. Biophys. Res. Commun., 306 (2003),pp. 79-86
    [30]
    Westerfield, M.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (93) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return