5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 10
Oct.  2010
Turn off MathJax
Article Contents

Expression of CENH3 alleles in synthesized allopolyploid Oryza species

doi: 10.1016/S1673-8527(09)60088-6
More Information
  • Corresponding author: E-mail address: weiweijin@cau.edu.cn (Weiwei Jin)
  • Received Date: 2010-06-09
  • Accepted Date: 2010-08-12
  • Rev Recd Date: 2010-08-11
  • Available Online: 2010-10-27
  • Publish Date: 2010-10-20
  • Synthesized allopolyploids are valuable materials for comparative analyses of two or more distinct genomes, such as the expression changes (activation, inactivation or differential expression) of orthologous genes following allopolyploidization. CENH3 is a centromere- specific histone H3 variant and has been regarded as a central component in kinetochore formation and centromere function. In this study, interspecific hybrids ofOryza genus (AA × CC, AA × CCDD) and their backcross progenies were produced, and the genome constitutions were identified as AC, ACC, ACD, AACD, or AA(CD) by Genomic in situ hybridization (GISH). We further cloned and sequenced the CENH3 genes from O. sativa (AA), O. officinalis (CC) and O. latifolia (CCDD). Sequencing of RT-PCR products revealed that CENH3_C2 and CENH3_D, the two CENH3 alleles from O. latifolia, showed polymophism in several sites, while CENH3_C2 and CENH3_C1 from O. officinalis were different at only two amino acids positions. Moreover, we found that the CENH3 genes from both parents are expressed in interspecific hybrids and their progenies. Specifically, based on our cDNA sequencing data, the ratio of expression level between CENH3_A and CENH3_C1 was approximately 1 in AC and 0.5 in ACC genomes, respectively. As a result, the CENH3 expression patterns shed more light on the inter-coordination between varied centromeric DNA sequences and highly conserved kinetochore protein in synthesized allopolyploids of Oryza genus.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Adams, K.L., Percifield, R., Wendel, J.F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid Genetics, 168 (2004),pp. 2217-2226
    [2]
    Allshire, R.C., Karpen, G.H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet., 9 (2008),pp. 923-937
    [3]
    Black, B.E., Foltz, D.R., Chakravarthy, S. et al. Structural determinants for generating centromeric chromatin Nature, 430 (2004),pp. 578-582
    [4]
    Bowers, J.E., Chapman, B.A., Rong, J.K. et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events Nature, 422 (2003),pp. 433-438
    [5]
    Chen, B.J., Ling, X.Y., Zhu, S.W. Journal of Anhui Agrotechnical Normal School, 10 (1996),pp. 27-28
    [6]
    Chen, Z.J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids Annu. Rev. Plant Biol., 58 (2007),pp. 377-406
    [7]
    Comai, L. Genetic and epigenetic interactions in allopolyploid plants Plant Mol. Biol., 43 (2000),pp. 387-399
    [8]
    Cooper, J.L., Henikoff, S. Adaptive evolution of the histone fold domain in centromeric histones Mol. Biol. Evol., 21 (2004),pp. 1712-1718
    [9]
    Flagel, L., Udall, J., Nettleton, D. et al. BMC Biol., 6 (2008),p. 16
    [10]
    Gaut, B.S., Doebley, J.F. DNA sequence evidence for the segmental allotetraploid origin of maize Proc. Nat. Acad. Sci. USA, 94 (1997),pp. 6809-6814
    [11]
    Ge, X.H., Wang, J., Li, Z.Y. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus Ann. Bot., 104 (2009),pp. 19-31
    [12]
    Guyot, R., Keller, B. Ancestral genome duplication in rice Genome, 47 (2004),pp. 610-614
    [13]
    Han, Y.H., Wang, G., Liu, Z. et al. Divergence in centromere structure distinguishes related genomes in Coix lacryma-jobi and its wild relative Chromosoma, 119 (2010),pp. 89-98
    [14]
    Henikoff, S., Ahmad, K., Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA Science, 293 (2001),pp. 1098-1102
    [15]
    Hirsch, C.D., Wu, Y.F., Yan, H.H. et al. Mol. Biol. Evol., 26 (2009),pp. 2877-2885
    [16]
    Hovav, R., Udall, J.A., Chaudhary, B. et al. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant Proc. Nat. Acad. Sci. USA, 105 (2008),pp. 6191-6195
    [17]
    Jiang, J.M., Gill, B.S., Wang, G.L. et al. Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 4487-4491
    [18]
    Jin, W.W., Melo, J.R., Nagaki, K. et al. Maize centromeres: Organization and functional adaptation in the genetic background of oat Plant Cell, 16 (2004),pp. 571-581
    [19]
    Kawabe, A., Nasuda, S. Mol. Genet. Genomics, 272 (2005),pp. 593-602
    [20]
    Lee, H.R., Zhang, W.L., Langdon, T. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 11793-11798
    [21]
    Leitch, A.R., Leitch, I.J. Genomic plasticity and the diversity of polyploidy plants Science, 320 (2008),pp. 481-483
    [22]
    Malik, H.S., Henikoff, S. Genetics, 157 (2001),pp. 1293-1298
    [23]
    Nagaki, K., Cheng, Z.K., Yang, S.O. et al. Sequencing of a rice centromere uncovers active genes Nat. Genet., 36 (2004),pp. 138-145
    [24]
    Nagaki, K., Kashihara, K., Murata, M. A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco Chromosoma, 118 (2009),pp. 249-257
    [25]
    Nagaki, K., Terada, K., Wakimoto, M. et al. Chromosome Res., 18 (2010),pp. 203-211
    [26]
    Otto, S.P., Whitton, J. Polyploid incidence and evolution Annu. Rev. Genet., 34 (2000),pp. 401-437
    [27]
    Pignatta, D., Comai, L. Parental squabbles and genome expression: lessons from the polyploids J. Biol., 8 (2009),p. 43
    [28]
    Ravi, M., Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination Nature, 464 (2010),pp. 615-619
    [29]
    Semon, M., Wolfe, K.H. Consequences of genome duplication Curr. Opin. Genet. Dev., 17 (2007),pp. 505-512
    [30]
    Talbert, P.B., Masuelli, R., Tyagi, A.P. et al. Plant Cell, 14 (2002),pp. 1053-1066
    [31]
    Tamura, K., Dudley, J., Nei, M. et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
    [32]
    Tan, G.X., Xiong, Z.Y., Jin, H.J. et al. J. Integr. Plant Biol., 48 (2006),pp. 1077-1083
    [33]
    Thompson, J.D., Gibson, T.J., Higgins, D.G.
    [34]
    Vermaak, D., Hayden, H.S., Henikoff, S. Centromere targeting element within the histone fold domain of Cid Mol. Cell Biol., 22 (2002),pp. 7553-7561
    [35]
    Wang, G.X., Zhang, X.Y., Jin, W.W. An overview of plant centromere J. Genet. Genomics, 36 (2009),pp. 529-537
    [36]
    Yi, C.D., Tang, S.Z., Zhou, Y. et al. Chin. Sci. Bull., 53 (2008),pp. 2973-2980
    [37]
    Zhong, C.X., Marshall, J.B., Topp, C. et al. Centromeric retroelements and satellites interact with Maize kinetochore protein CENH3 Plant Cell, 14 (2002),pp. 2825-2836
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return