Alavizadeh, A., Kiernan, A.E., Nolan, P., Lo, C., Steel, K.P., Bucan, M., 2001. The wheels mutation in the mouse causes vascular, hindbrain, and inner ear defects. Dev. Biol. 234, 244-260.
|
Balasubramanian, R., Choi, J.H., Francescatto, L., Willer, J., Horton, E.R., Asimacopoulos, E.P., Stankovic, K.M., Plummer, L., Buck, C.L., Quinton, R., et al., 2014. Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency. Proc. Natl. Acad. Sci. U. S. A. 111, 17953-17958.
|
Basson, M.A.,van Ravenswaaij-Arts, C., 2015. Functional insights into chromatin remodelling from studies on CHARGE syndrome. Trends Genet. 31, 600-611.
|
Bedzhov, I., Leung, C.Y., Bialecka, M.,Zernicka-Goetz, M., 2014. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732-2739.
|
Bouazoune, K.,Kingston, R.E., 2012. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc. Natl. Acad. Sci. U. S. A. 109, 19238-19243.
|
Chiaradia, I.,Lancaster, M.A., 2020. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23, 1496-1508.
|
Clapier, C.R.,Cairns, B.R., 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273-304.
|
Clapier, C.R., Verma, N., Parnell, T.J.,Cairns, B.R., 2020. Cancer-associated gain-of-function mutations activate a SWI/SNF-family regulatory hub. Mol. Cell 80, 712-725.
|
Consortium, E.P., 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74.
|
Delahaye, A., Sznajer, Y., Lyonnet, S., Elmaleh-Berges, M., Delpierre, I., Audollent, S., Wiener-Vacher, S., Mansbach, A.L., Amiel, J., Baumann, C., et al., 2007. Familial CHARGE syndrome because of CHD7 mutation: clinical intra- and interfamilial variability. Clin. Genet. 72, 112-121.
|
Farnung, L., Ochmann, M.,Cramer, P., 2020. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. Elife 9, e56178.
|
Feng, W., Kawauchi, D., Korkel-Qu, H., Deng, H., Serger, E., Sieber, L., Lieberman, J.A., Jimeno-Gonzalez, S., Lambo, S., Hanna, B.S., et al., 2017. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat. Commun. 8, 14758.
|
Feng, W., Khan, M.A., Bellvis, P., Zhu, Z., Bernhardt, O., Herold-Mende, C., Liu, H.K., 2013. The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell Stem Cell 13, 62-72.
|
Ghosh, T.K., Brook, J.D.,Wilsdon, A., 2017. T-Box genes in human development and disease. Curr. Top. Dev. Biol. 122, 383-415.
|
Gourisankar, S., Krokhotin, A., Wenderski, W., Crabtree, G.R., 2024. Context-specific functions of chromatin remodellers in development and disease. Nat. Rev. Genet. 25, 340-361.
|
Grand, R.S., Burger, L., Grawe, C., Michael, A.K., Isbel, L., Hess, D., Hoerner, L., Iesmantavicius, V., Durdu, S., Pregnolato, M., et al., 2021. BANP opens chromatin and activates CpG-island-regulated genes. Nature 596, 133-137.
|
Gururaj, S., Palmer, E.E., Sheehan, G.D., Kandula, T., Macintosh, R., Ying, K., Morris, P., Tao, J., Dias, K.R., Zhu, Y., et al., 2017. A de novo mutation in the sodium-activated potassium channel KCNT2 alters ion selectivity and causes epileptic encephalopathy. Cell Rep. 21, 926-933.
|
He, Y., Hariharan, M., Gorkin, D.U., Dickel, D.E., Luo, C., Castanon, R.G., Nery, J.R., Lee, A.Y., Zhao, Y., Huang, H., et al., 2020. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752-759.
|
Ho, L.,Crabtree, G.R., 2010. Chromatin remodelling during development. Nature 463, 474-484.
|
Hodges, H.C., Stanton, B.Z., Cermakova, K., Chang, C.Y., Miller, E.L., Kirkland, J.G., Ku, W.L., Veverka, V., Zhao, K.,Crabtree, G.R., 2018. Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat. Struct. Mol. Biol. 25, 61-72.
|
Huang, Z., He, C., Wang, G., Zhu, M., Tong, X., Feng, Y., Zhang, C., Dong, S., Harim, Y., Liu, H.K., et al., 2025. Mutation of CHD7 impairs the output of neuroepithelium transition that is reversed by the inhibition of EZH2. Mol. Psychiatry 30, 4094-4109.
|
Hurd, E.A., Capers, P.L., Blauwkamp, M.N., Adams, M.E., Raphael, Y., Poucher, H.K.,Martin, D.M., 2007. Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm. Genome 18, 94-104.
|
Islam, M.M., Zhang, C.L., 2015. TLX: a master regulator for neural stem cell maintenance and neurogenesis. Biochim. Biophys. Acta 1849, 210-216.
|
Jongmans, M.C., van Ravenswaaij-Arts, C.M., Pitteloud, N., Ogata, T., Sato, N., Claahsen-van der Grinten, H.L., van der Donk, K., Seminara, S., Bergman, J.E., Brunner, H.G., et al., 2009. CHD7 mutations in patients initially diagnosed with Kallmann syndrome--the clinical overlap with CHARGE syndrome. Clin. Genet. 75, 65-71.
|
Kim, H.G., Kurth, I., Lan, F., Meliciani, I., Wenzel, W., Eom, S.H., Kang, G.B., Rosenberger, G., Tekin, M., Ozata, M., et al., 2008. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am. J. Hum. Genet. 83, 511-519.
|
Kovac, K., Sauer, A., Macinkovic, I., Awe, S., Finkernagel, F., Hoffmeister, H., Fuchs, A., Muller, R., Rathke, C., Langst, G., et al., 2018. Tumour-associated missense mutations in the dMi-2 ATPase alters nucleosome remodelling properties in a mutation-specific manner. Nat. Commun. 9, 2112.
|
Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., Knoblich, J.A., 2013. Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379.
|
Marcos, S., Sarfati, J., Leroy, C., Fouveaut, C., Parent, P., Metz, C., Wolczynski, S., Gerard, M., Bieth, E., Kurtz, F., et al., 2014. The prevalence of CHD7 missense versus truncating mutations is higher in patients with Kallmann syndrome than in typical CHARGE patients. J. Clin. Endocrinol. Metab. 99, E2138-2143.
|
Morgan, M.A.J., Shilatifard, A., 2023. Epigenetic moonlighting: catalytic-independent functions of histone modifiers in regulating transcription. Sci. Adv. 9, eadg6593.
|
Nie, J., Ueda, Y., Solivais, A.J., Hashino, E., 2022. CHD7 regulates otic lineage specification and hair cell differentiation in human inner ear organoids. Nat. Commun. 13, 7053.
|
Ochi, S., Manabe, S., Kikkawa, T., Osumi, N., 2022. Thirty years’ history since the discovery of Pax6: from central nervous system development to neurodevelopmental disorders. Int. J. Mol. Sci. 23, 6115.
|
Oproescu, A.M., Han, S., Schuurmans, C., 2021. New insights into the intricacies of proneural gene regulation in the embryonic and adult cerebral cortex. Front. Mol. Neurosci. 14, 642016.
|
Reddy, N.C., Majidi, S.P., Kong, L., Nemera, M., Ferguson, C.J., Moore, M., Goncalves, T.M., Liu, H.K., Fitzpatrick, J.A.J., Zhao, G., et al., 2021. CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nat. Commun. 12, 5702.
|
Rubenstein, J.L., Nord, A.S., Ekker, M., 2024. DLX genes and proteins in mammalian forebrain development. Development 151, dev202684.
|
Schnetz, M.P., Handoko, L., Akhtar-Zaidi, B., Bartels, C.F., Pereira, C.F., Fisher, A.G., Adams, D.J., Flicek, P., Crawford, G.E., Laframboise, T., et al., 2010. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet. 6, e1001023.
|
Snijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., Rodan, L.H., Nowak, C.B., Douglas, J., Swoboda, K.J., et al., 2018. CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat. Commun. 9, 4619.
|
Stanton, B.Z., Hodges, C., Crabtree, G.R.,Zhao, K., 2017. A general non-radioactive ATPase assay for chromatin remodeling complexes. Curr. Protoc. Chem. Biol. 9, 1-10.
|
Sullivan, A.E., Santos, S.D.M., 2020. An optimized protocol for ChIP-Seq from human embryonic stem cell cultures. STAR Protoc. 1, 100062.
|
Taverna, E., Gotz, M., Huttner, W.B., 2014. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30, 465-502.
|
Thoma, E.C., Wischmeyer, E., Offen, N., Maurus, K., Siren, A.L., Schartl, M., Wagner, T.U., 2012. Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS ONE 7, e38651.
|
Tocco, C., Bertacchi, M., Studer, M., 2021. Structural and functional aspects of the neurodevelopmental gene NR2F1: from animal models to human pathology. Front. Mol. Neurosci. 14, 767965.
|
Velasco, S., Ibrahim, M.M., Kakumanu, A., Garipler, G., Aydin, B., Al-Sayegh, M.A., Hirsekorn, A., Abdul-Rahman, F., Satija, R., Ohler, U., et al., 2017. A multi-step transcriptional and chromatin state cascade underlies motor neuron programming from embryonic stem cells. Cell Stem Cell 20, 205-217 e208.
|
Vissers, L.E., van Ravenswaaij, C.M., Admiraal, R., Hurst, J.A., de Vries, B.B., Janssen, I.M., van der Vliet, W.A., Huys, E.H., de Jong, P.J., Hamel, B.C., et al., 2004. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 36, 955-957.
|
Weiss, K., Lazar, H.P., Kurolap, A., Martinez, A.F., Paperna, T., Cohen, L., Smeland, M.F., Whalen, S., Heide, S., Keren, B., et al., 2020. The CHD4-related syndrome: a comprehensive investigation of the clinical spectrum, genotype-phenotype correlations, and molecular basis. Genet. Med. 22, 389-397.
|
Yan, S., Thienthanasit, R., Chen, D., Engelen, E., Bruhl, J., Crossman, D.K., Kesterson, R., Wang, Q., Bouazoune, K., Jiao, K., 2020. CHD7 regulates cardiovascular development through ATP-dependent and -independent activities. Proc. Natl. Acad. Sci. U. S. A. 117, 28847-28858.
|