9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

ATPase-deficient CHD7 disease variant disrupts neural development via chromatin dysregulation

doi: 10.1016/j.jgg.2025.08.012
Funds:

This research was supported by grants from National Natural Science Foundation of China (81974229 and 82171167 to W.F., 82330049 to W.Z.), Xiamen Municipal Major Project of High-Quality Development of Health and Wellness Technology Program (2024-GZL-GD06 to W.F.), National Key R&D Program of China (2022YFA0806603 to W.F.) and Science and Technology Program of Guangzhou, China (2024A04J4924 to C.H.).

  • Received Date: 2025-06-12
  • Accepted Date: 2025-08-31
  • Rev Recd Date: 2025-08-31
  • Available Online: 2025-09-08
  • Chromodomain helicase DNA binding protein 7 (CHD7), an ATP-dependent chromatin remodeler, plays versatile roles in neurodevelopment. However, the functional significance of its ATPase/nucleosome remodeling activity remains incompletely understood. Here, we generate genetically engineered mouse embryonic stem cell lines harboring either an inducible Chd7 knockout or an ATPase-deficient missense variant identified in individuals with CHD7-related disorders. Through in vitro neural induction and differentiation assays combined with mouse brain analyses, we demonstrate that CHD7 enzymatic activity is indispensable for gene regulation and neurite development. Mechanistic studies integrating transcriptomic and epigenomic profiling reveal that CHD7 enzymatic activity is essential for establishing a permissive chromatin landscape at target genes, marked by the open chromatin architecture and active histone modifications. Collectively, our findings underscore the pivotal role of CHD7 enzymatic activity in neurodevelopment and provide critical insights into the pathogenic mechanisms of CHD7 missense variants in human disease.
  • loading
  • Alavizadeh, A., Kiernan, A.E., Nolan, P., Lo, C., Steel, K.P., Bucan, M., 2001. The wheels mutation in the mouse causes vascular, hindbrain, and inner ear defects. Dev. Biol. 234, 244-260.
    Balasubramanian, R., Choi, J.H., Francescatto, L., Willer, J., Horton, E.R., Asimacopoulos, E.P., Stankovic, K.M., Plummer, L., Buck, C.L., Quinton, R., et al., 2014. Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency. Proc. Natl. Acad. Sci. U. S. A. 111, 17953-17958.
    Basson, M.A.,van Ravenswaaij-Arts, C., 2015. Functional insights into chromatin remodelling from studies on CHARGE syndrome. Trends Genet. 31, 600-611.
    Bedzhov, I., Leung, C.Y., Bialecka, M.,Zernicka-Goetz, M., 2014. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732-2739.
    Bouazoune, K.,Kingston, R.E., 2012. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc. Natl. Acad. Sci. U. S. A. 109, 19238-19243.
    Chiaradia, I.,Lancaster, M.A., 2020. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23, 1496-1508.
    Clapier, C.R.,Cairns, B.R., 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273-304.
    Clapier, C.R., Verma, N., Parnell, T.J.,Cairns, B.R., 2020. Cancer-associated gain-of-function mutations activate a SWI/SNF-family regulatory hub. Mol. Cell 80, 712-725.
    Consortium, E.P., 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74.
    Delahaye, A., Sznajer, Y., Lyonnet, S., Elmaleh-Berges, M., Delpierre, I., Audollent, S., Wiener-Vacher, S., Mansbach, A.L., Amiel, J., Baumann, C., et al., 2007. Familial CHARGE syndrome because of CHD7 mutation: clinical intra- and interfamilial variability. Clin. Genet. 72, 112-121.
    Farnung, L., Ochmann, M.,Cramer, P., 2020. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. Elife 9, e56178.
    Feng, W., Kawauchi, D., Korkel-Qu, H., Deng, H., Serger, E., Sieber, L., Lieberman, J.A., Jimeno-Gonzalez, S., Lambo, S., Hanna, B.S., et al., 2017. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat. Commun. 8, 14758.
    Feng, W., Khan, M.A., Bellvis, P., Zhu, Z., Bernhardt, O., Herold-Mende, C., Liu, H.K., 2013. The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell Stem Cell 13, 62-72.
    Ghosh, T.K., Brook, J.D.,Wilsdon, A., 2017. T-Box genes in human development and disease. Curr. Top. Dev. Biol. 122, 383-415.
    Gourisankar, S., Krokhotin, A., Wenderski, W., Crabtree, G.R., 2024. Context-specific functions of chromatin remodellers in development and disease. Nat. Rev. Genet. 25, 340-361.
    Grand, R.S., Burger, L., Grawe, C., Michael, A.K., Isbel, L., Hess, D., Hoerner, L., Iesmantavicius, V., Durdu, S., Pregnolato, M., et al., 2021. BANP opens chromatin and activates CpG-island-regulated genes. Nature 596, 133-137.
    Gururaj, S., Palmer, E.E., Sheehan, G.D., Kandula, T., Macintosh, R., Ying, K., Morris, P., Tao, J., Dias, K.R., Zhu, Y., et al., 2017. A de novo mutation in the sodium-activated potassium channel KCNT2 alters ion selectivity and causes epileptic encephalopathy. Cell Rep. 21, 926-933.
    He, Y., Hariharan, M., Gorkin, D.U., Dickel, D.E., Luo, C., Castanon, R.G., Nery, J.R., Lee, A.Y., Zhao, Y., Huang, H., et al., 2020. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752-759.
    Ho, L.,Crabtree, G.R., 2010. Chromatin remodelling during development. Nature 463, 474-484.
    Hodges, H.C., Stanton, B.Z., Cermakova, K., Chang, C.Y., Miller, E.L., Kirkland, J.G., Ku, W.L., Veverka, V., Zhao, K.,Crabtree, G.R., 2018. Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat. Struct. Mol. Biol. 25, 61-72.
    Huang, Z., He, C., Wang, G., Zhu, M., Tong, X., Feng, Y., Zhang, C., Dong, S., Harim, Y., Liu, H.K., et al., 2025. Mutation of CHD7 impairs the output of neuroepithelium transition that is reversed by the inhibition of EZH2. Mol. Psychiatry 30, 4094-4109.
    Hurd, E.A., Capers, P.L., Blauwkamp, M.N., Adams, M.E., Raphael, Y., Poucher, H.K.,Martin, D.M., 2007. Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm. Genome 18, 94-104.
    Islam, M.M., Zhang, C.L., 2015. TLX: a master regulator for neural stem cell maintenance and neurogenesis. Biochim. Biophys. Acta 1849, 210-216.
    Jongmans, M.C., van Ravenswaaij-Arts, C.M., Pitteloud, N., Ogata, T., Sato, N., Claahsen-van der Grinten, H.L., van der Donk, K., Seminara, S., Bergman, J.E., Brunner, H.G., et al., 2009. CHD7 mutations in patients initially diagnosed with Kallmann syndrome--the clinical overlap with CHARGE syndrome. Clin. Genet. 75, 65-71.
    Kim, H.G., Kurth, I., Lan, F., Meliciani, I., Wenzel, W., Eom, S.H., Kang, G.B., Rosenberger, G., Tekin, M., Ozata, M., et al., 2008. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am. J. Hum. Genet. 83, 511-519.
    Kovac, K., Sauer, A., Macinkovic, I., Awe, S., Finkernagel, F., Hoffmeister, H., Fuchs, A., Muller, R., Rathke, C., Langst, G., et al., 2018. Tumour-associated missense mutations in the dMi-2 ATPase alters nucleosome remodelling properties in a mutation-specific manner. Nat. Commun. 9, 2112.
    Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., Knoblich, J.A., 2013. Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379.
    Marcos, S., Sarfati, J., Leroy, C., Fouveaut, C., Parent, P., Metz, C., Wolczynski, S., Gerard, M., Bieth, E., Kurtz, F., et al., 2014. The prevalence of CHD7 missense versus truncating mutations is higher in patients with Kallmann syndrome than in typical CHARGE patients. J. Clin. Endocrinol. Metab. 99, E2138-2143.
    Morgan, M.A.J., Shilatifard, A., 2023. Epigenetic moonlighting: catalytic-independent functions of histone modifiers in regulating transcription. Sci. Adv. 9, eadg6593.
    Nie, J., Ueda, Y., Solivais, A.J., Hashino, E., 2022. CHD7 regulates otic lineage specification and hair cell differentiation in human inner ear organoids. Nat. Commun. 13, 7053.
    Ochi, S., Manabe, S., Kikkawa, T., Osumi, N., 2022. Thirty years’ history since the discovery of Pax6: from central nervous system development to neurodevelopmental disorders. Int. J. Mol. Sci. 23, 6115.
    Oproescu, A.M., Han, S., Schuurmans, C., 2021. New insights into the intricacies of proneural gene regulation in the embryonic and adult cerebral cortex. Front. Mol. Neurosci. 14, 642016.
    Reddy, N.C., Majidi, S.P., Kong, L., Nemera, M., Ferguson, C.J., Moore, M., Goncalves, T.M., Liu, H.K., Fitzpatrick, J.A.J., Zhao, G., et al., 2021. CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nat. Commun. 12, 5702.
    Rubenstein, J.L., Nord, A.S., Ekker, M., 2024. DLX genes and proteins in mammalian forebrain development. Development 151, dev202684.
    Schnetz, M.P., Handoko, L., Akhtar-Zaidi, B., Bartels, C.F., Pereira, C.F., Fisher, A.G., Adams, D.J., Flicek, P., Crawford, G.E., Laframboise, T., et al., 2010. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet. 6, e1001023.
    Snijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., Rodan, L.H., Nowak, C.B., Douglas, J., Swoboda, K.J., et al., 2018. CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat. Commun. 9, 4619.
    Stanton, B.Z., Hodges, C., Crabtree, G.R.,Zhao, K., 2017. A general non-radioactive ATPase assay for chromatin remodeling complexes. Curr. Protoc. Chem. Biol. 9, 1-10.
    Sullivan, A.E., Santos, S.D.M., 2020. An optimized protocol for ChIP-Seq from human embryonic stem cell cultures. STAR Protoc. 1, 100062.
    Taverna, E., Gotz, M., Huttner, W.B., 2014. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30, 465-502.
    Thoma, E.C., Wischmeyer, E., Offen, N., Maurus, K., Siren, A.L., Schartl, M., Wagner, T.U., 2012. Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS ONE 7, e38651.
    Tocco, C., Bertacchi, M., Studer, M., 2021. Structural and functional aspects of the neurodevelopmental gene NR2F1: from animal models to human pathology. Front. Mol. Neurosci. 14, 767965.
    Velasco, S., Ibrahim, M.M., Kakumanu, A., Garipler, G., Aydin, B., Al-Sayegh, M.A., Hirsekorn, A., Abdul-Rahman, F., Satija, R., Ohler, U., et al., 2017. A multi-step transcriptional and chromatin state cascade underlies motor neuron programming from embryonic stem cells. Cell Stem Cell 20, 205-217 e208.
    Vissers, L.E., van Ravenswaaij, C.M., Admiraal, R., Hurst, J.A., de Vries, B.B., Janssen, I.M., van der Vliet, W.A., Huys, E.H., de Jong, P.J., Hamel, B.C., et al., 2004. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 36, 955-957.
    Weiss, K., Lazar, H.P., Kurolap, A., Martinez, A.F., Paperna, T., Cohen, L., Smeland, M.F., Whalen, S., Heide, S., Keren, B., et al., 2020. The CHD4-related syndrome: a comprehensive investigation of the clinical spectrum, genotype-phenotype correlations, and molecular basis. Genet. Med. 22, 389-397.
    Yan, S., Thienthanasit, R., Chen, D., Engelen, E., Bruhl, J., Crossman, D.K., Kesterson, R., Wang, Q., Bouazoune, K., Jiao, K., 2020. CHD7 regulates cardiovascular development through ATP-dependent and -independent activities. Proc. Natl. Acad. Sci. U. S. A. 117, 28847-28858.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return