Abdel-Fattah, G.M., Asrar, A.A., 2012. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol. Plant. 34, 267-277.
|
Abdelmalik, A.M., Alsharani, T.S., Al-Qarawi, A.A., Ahmed, A.I., Aref, I.M., 2020. Response of growth and drought tolerance of Acacia seyal Del. seedlings to arbuscular mycorrhizal fungi. Plant Soil Environ. 66, 264-271.
|
Chen, J., Zhang, H., Zhang, X., Tang, M., 2017. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ Homeostasis. Front. Plant Sci. 8, 1739.
|
Cordier, C., Pozo, M.J., Barea, J.M., Gianinazzi, S., Gianinazzi-Pearson, V., 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant Microbe Interact. 11, 1017-1028.
|
Elhindi, K.M., El-Din, A.S., Elgorban, A.M., 2017. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 24, 170-179.
|
Estrada-Luna, A.A., Davies, F.T., 2003. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscissic acid and growth of micropropagated Chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J. Plant Physiol. 160, 1073-1083.
|
Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., Tang, D., et al., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175.
|
Li, Z., Wu, N., Meng, S., Wu, F., Liu, T., 2020. Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS One 15, e0231497.
|
Liu, J., Yang, B., Chen, X., Zhang, T., Zhang, H., Du, Y., Zhao, Q., Zhang, Z., Cai, D., Liu, J., et al., 2024. ZmL75 is required for colonization by arbuscular mycorrhizal fungi and for saline-alkali tolerance in maize. J. Genet. Genomics S1673-8527, 00368-0.
|
Liu, N., Chen, X., Song, F., Liu, F., Liu, S., Zhu, X., 2016. Effects of arbuscular mycorrhiza on growth and nutrition of maize plants under low temperature stress. Philippine Agric. Sci. 99, 246-252.
|
Parihar, M., Rakshit, A., Rana, K., Tiwari, G., Jatav, S.S., 2020. The effect of arbuscular mycorrhizal fungi inoculation in mitigating salt stress of pea (Pisum sativum L.). Commun. Soil Sci. Plant Anal. 51, 1545-1559.
|
Porcel, R., Aroca, R., Azcon, R., Ruiz-Lozano, J.M., 2016. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26, 673-684.
|
Sayin, F., Khalvati, M., Erdincler, A., 2019. Effects of sewage sludge application and arbuscular mycorrhizal fungi (G. mosseae and G. intraradices) interactions on the heavy metal phytoremediation in chrome mine tailings. Front. Plant Sci. 112, 217-224.
|
Sheng, M., Tang, M., Zhang, F., Huang, Y., 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21, 423-430.
|
Shi, J., Wang, X., Wang E., 2023. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annu. Rev. Plant Biol. 74, 569-607.
|
Shi-Chu, L., Yong, J., Ma-Bo, L., Wen-Xu, Z., Nan, X., Hui-hui, Z., 2019. Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. J. Plant Interact. 14, 482-491.
|
Talaat, N.B., Shawky, B.T., 2011. Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J. Plant Nutr. Soil Sci. 174, 283-291.
|
Wang, E., Schornack, S., Marsh, J.F., Gobbato, E., Schwessinger, B., Eastmond, P., Schultze, M., Kamoun, S., Oldroyd, G.E.D., 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22, 2242-2246.
|
Xiong, L., Zhu, J.K., 2002. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 25, 131-139.
|
Plaxton, W.C., Tran, H.T., 2011. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 156, 1006-1015.
|
Poirier, Y., Thoma, S., Somerville, C., Schiefelbein, J., 1991. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 97, 1087-1093.
|
Puga, M.I., Mateos, I., Charukesi, R., Wang, Z., Franco-Zorrilla, J.M., de Lorenzo, L., Irigoyen, M.L., Masiero, S., Bustos, R., Rodriguez, J. et al., 2014. SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A 111, 14947-14952.
|
Raghothama, K.G., 1999. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665-693.
|
Razaq, M., Zhang, P., Shen, H.L., Salahuddin, 2017. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One 12, e0171321.
|
Reed, H., 1946. Effects of zinc deficiency on phosphate metabolism of the tomato plant. Am. J. Bot. 33, 778-784.
|
Reis, R., Deforges, J., Sokoloff, T., Poirier, Y., 2020. Modulation of shoot phosphate level and growth by PHOSPHATE1 upstream open reading frame. Plant Physiol. 183, 1145-1156.
|
Ried, M.K., Wild, R., Zhu, J.S., Pipercevic, J., Sturm, K., Broger, L., Harmel, R.K., Abriata, L.A., Hothorn, L.A., Fiedler, D., et al., 2021. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat. Commun. 12, 384.
|
Robinson, W.D., Park, J., Tran, H.T., Del Vecchio, H.A., Ying, S., Zins, J.L., Patel, K., McKnight, T.D., Plaxton, W.C., 2012. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. J. Exp. Bot. 63, 6531-6542.
|
Ruan, W., Guo, M., Wang, X., Guo, Z., Xu, Z., Xu, L., Zhao, H., Sun, H., Yan, C., Yi, K.,2019. Two ring-finger ubiquitin E3 ligases regulate the degradation of SPX4, an Internal Phosphate Sensor, for phosphate homeostasis and signaling in rice. Mol. Plant. 12, 1060-1074.
|
Rufty, T.W., Mackown, C.T., Israel, D.W., 1990. Phosphorus stress effects on assimilation of nitrate. Plant Physiol. 94, 328-333.
|
Rufty, T.W.Jr, Israel, D.W., Volk, R.J., Qiu, J., Sa, T., 1993. Phosphate regulation of nitrate assimilation in soybean. J. Exp. Bot. 44, 879-891.
|
Rufty, T.W.Jr, Siddiqi, M.Y., Glass, A.D.M., Ruth, T.J., 1991. Altered 13NO3- influx in phosphorus limited plants. Plant Sci. 76, 43-48.
|
Salazar-Vidal, M.N., Acosta-Segovia, E., Sanchez-Leon, N., Ahern, K.R., Brutnell, T.P., Sawers, R.J., 2016. Characterization and transposon mutagenesis of the maize (Zea mays) Pho1 gene family. PLoS One 11, e0161882.
|
Schachtman, D.P., Reid, R.J., Ayling, S.M., 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447-453.
|
Schluter, U., Colmsee, C., Scholz, U., Brautigam, A., Weber, A.P., Zellerhoff, N., Bucher, M., Fahnenstich, H., Sonnewald, U., 2013. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genom., 14, 442.
|
Sentenac, H., Grignon, C., 1985. Effect of pH on orthophosphate uptake by corn roots. Plant Physiol. 77, 136-141.
|
Shi, J., Zhao, B., Zheng, S., Zhang, X., Wang, X., Dong, W., Xie, Q., Wang, G., Xiao, Y., Chen, F., et al., 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184, 5527-5540.
|
Shin, H., Shin, H.S., Dewbre, G.R., Harrison, M.J., 2004. Phosphate transport in Arabidopsis: pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 39, 629-642.
|
Smith, S.E., Smith, F.A., Jakobsen, I., 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133, 16-20.
|
Su, T., Xu, Q., Zhang, F.C., Chen, Y., Li, L.Q., Wu, W.H., Chen, Y.F., 2015. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol., 167, 1579-1591.
|
Sun, B.R., Gao, Y.Z., Lynch, J.P., 2018. Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiol. 177, 90-104.
|
Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L., Desnos, T., 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nat. Genet. 39, 792-796.
|
Tang, H., Niu, L., Wei, J., Chen, X., Chen, Y., 2019. Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Front. Plant Sci. 10, 856.
|
Taramino, G., Sauer, M., Stauffer, J.L. Jr., Multani, D., Niu, X., Sakai, H., Hochholdinger, F., 2007. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J. 50, 649-659.
|
Tariq, A., Pan, K., Olatunji, O.A., Graciano, C., Li, Z., Li, N., Song, D., Sun, F., Wu, X., Dakhil, M.A., et al., 2019. Impact of phosphorus application on drought resistant responses of Eucalyptus grandis seedlings. Physiol. Plantarum 166, 894-908.
|
Tian, M.Z., Wang, H.F., Tian, Y., Hao, J., Guo, H.L., Chen, L.M., Wei, Y.K., Zhan, S.H., Yu, H.T., Chen, Y.F., 2024. ZmPHR1 contributes to drought resistance by modulating phosphate homeostasis in maize. Plant Biotechnol. J. doi: 10.1111/pbi.14431. (Epub ahead of print).
|
Ticconi, C.A., Lucero, R.D., Sakhonwasee, S., Adamson, A.W., Creff, A., Nussaume, L., Desnos, T., Abel, S., 2009. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc. Natl. Acad. Sci. U. S. A 106, 14174-14179.
|
Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., Charron, P., Duensing, N., Frei dit Frey, N., Gianinazzi-Pearson, V., et al., 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. U. S. A 110, 20117-20122.
|
Vance, C.P., Uhde-Stone, C., Allan, D.L., 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423-447.
|
Vogiatzaki, E., Baroux, C., Jung, J.Y., Poirier, Y., 2017. PHO1 exports phosphate from the chalazal seed coat to the embryo in developing Arabidopsis seeds. Curr. Biol. 27, 2893-2900.
|
Wang, C., Huang, W., Ying, Y., Li, S., Secco, D., Tyerman, S., Whelan, J., Shou, H., 2012. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol. 196, 139-148.
|
Wang, F., Cui, P.J., Tian, Y., Huang, Y., Wang, H.F., Liu, F., Chen, Y.F., 2020a. Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation. Plant Biotechnol. J. 18, 2406-2419.
|
Wang, F., Deng, M., Chen, J., He, Q., Jia, X., Guo, H., Xu, J., Liu, Y., Zhang, S., Shou, H., Mao, C., 2020b. CASEIN KINASE2-dependent phosphorylation of PHOSPHATE2 fine-tunes phosphate homeostasis in rice. Plant Physiol. 183, 250-262.
|
Wang, G., Jin, Z., George, T.S., Feng, G., Zhang, L., 2023a. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytol. 238, 2578-2593.
|
Wang, H., Xu, Q., Kong, Y.H., Chen, Y., Duan, J.Y., Wu, W.H., Chen, Y.F., 2014a. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol. 164, 2020-2029.
|
Wang, J., Pan, W., Nikiforov, A., King, W., Hong, W., Li, W., Han, Y., Patton-Vogt, J., Shen, J., Cheng, L., 2021a. Identification of two glycerophosphodiester phosphodiesterase genes in maize leaf phosphorus remobilization. Crop J. 9, 95-108.
|
Wang, R., Zhong, Y., Liu, X., Zhao, C., Zhao, J., Li, M., Ul Hassan, M., Yang, B., Li, D., Liu, R., et al., 2021b. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. J. Exp. Bot. 72, 3846-3863.
|
Wang, X., Wang, H.F., Chen, Y., Sun, M.M., Wang, Y., Chen, Y.F., 2020c. The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize. Plant Cell 32, 3519-3534.
|
Wang, X., Yuan, D., Liu, Y., Liang, Y., He, J., Yang, X., Hang, R., Jia, H., Mo, B., Tian, F., et al., 2023b. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize. Plant Cell 35, 2208-2231.
|
Wang, Y., Wang, F., Lu, H., Liu, Y., Mao, C., 2021c. Phosphate uptake and transport in plants: an elaborate regulatory system. Plant Cell Physiol. 62, 564-572.
|
Wang, Y., Wang, Z., Du, Q., Wang, K., Zou, C., Li, W.X., 2023c. The long non-coding RNA PILNCR2 increases low phosphate tolerance in maize by interfering with miRNA399-guided cleavage of ZmPHT1s. Mol. Plant 16, 1146-1159.
|
Wang, Z., Ruan, W., Shi, J., Zhang, L., Xiang, D., Yang, C., Li, C., Wu, Z., Liu, Y., Yu, Y., et al., 2014b. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc. Natl. Acad. Sci. U. S. A 111, 14953-14958.
|
Willmann, M., Gerlach, N., Buer, B., Polatajko, A., Nagy, R., Koebke, E., Jansa, J., Flisch, R., Bucher, M., 2013. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front. Plant Sci. 4, 533.
|
Wright, D.P., Scholes, J.D., Read, D.J., Rolfe, S.A., 2005. European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol. 167, 881-896.
|
Wu, F., Yahaya, B.S., Gong, Y., He, B., Gou, J., He, Y., Li J., Kang Y., Xu J., Wang Q. et al., 2024. ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize. PLoS Genet. 20, e1011135.
|
Xiao, J., Xie, X., Li, C., Xing, G., Cheng, K., Li, H., Liu, N., Tan, J., Zheng, W., 2021. Identification of SPX family genes in the maize genome and their expression under different phosphate regimes. Plant Physiol. Biochem. 168, 211-220.
|
Xu, C., Tai, H., Saleem, M., Ludwig, Y., Majer, C., Berendzen, K. W., Nagel, K. A., Wojciechowski, T., Meeley, R.B., Taramino, G., et al., 2015. Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shoot-borne root formation. New Phytol. 207, 1123-1133.
|
Xu, L., Zhao, H., Wan, R., Liu, Y., Xu, Z., Tian, W., Ruan, W., Wang, F., Deng, M., Wang, J., et al., 2019. Identification of vacuolar phosphate efflux transporters in land plants. Nat. Plants 5, 84-94.
|
Xu, Y., Bao, H., Fei, H., Zhou, W., Li, X., Liu, F., 2021. Overexpression of a phosphate transporter gene ZmPt9 from maize influences growth of transgenic Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 558, 196-201.
|
Xu, Y., Liu, F., Li, X., Cheng, B., 2018. The mycorrhiza-induced maize ZmPt9 gene affects root development and phosphate availability in nonmycorrhizal plant. Plant Signal. Behav. 13, e1542240.
|
Yan, P., Du, Q., Chen, H., Guo, Z., Wang, Z., Tang, J., Li, W.X., 2023. Biofortification of iron content by regulating a NAC transcription factor in maize. Science 382, 1159-1165.
|
Yang, S.Y., Lin, W.Y., Hsiao, Y.M., Chiou, T.J., 2024. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. Plant Cell 36, 1504-1523.
|
Yang, Z., Yang, J., Wang, Y., Wang, F., Mao, W., He, Q., Xu, J., Wu, Z., Mao, C., 2020. PROTEIN PHOSPHATASE95 regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice. Plant Cell 32, 740-757.
|
Ye, Q., Wang, H., Su, T., Wu, W.H., Chen, Y.F., 2018. The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in Arabidopsis. Plant Cell 30, 1062-1076.
|
Yu, B., Zhou, C., Wang, Z., Bucher, M., Schaaf, G., Sawers, R. J. H., Chen, X., Hochholdinger, F., Zou, C., Yu, P., 2024. Maize zinc uptake is influenced by arbuscular mycorrhizal symbiosis under various soil phosphorus availabilities. New Phytol. 243, 1936-1950.
|
Yu, T., Liu, C., Lu, X., Bai, Y., Zhou, L., Cai, Y., 2019. ZmAPRG, an uncharacterized gene, enhances acid phosphatase activity and Pi concentration in maize leaf during phosphate starvation. Theor. Appl. Genet. 132, 1035-1048.
|
Zanin, L., Venuti, S., Zamboni, A., Varanini, Z., Tomasi, N., Pinton, R., 2017. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. BMC Genom. 18, 154.
|
Zhang, J., Gu, M., Liang, R., Shi, X., Chen, L., Hu, X., Wang, S., Dai, X., Qu, H., Li, H., et al., 2021. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions. New Phytol. 229, 1598-1614.
|
Zhang, L., Chia, J.M., Kumari, S., Stein, J.C., Liu, Z., Narechania, A., Maher, C.A., Guill, K., McMullen M. D., Ware D., 2009. A genome-wide characterization of microRNA genes in maize. PLoS Genet. 5, e1000716.
|
Zhang, L., Zhou, J., George, T.S., Limpens, E., Feng, G., 2022a. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci. 27, 402-411.
|
Zhang, Q., Tian, S., Chen, G., Tang, Q., Zhang, Y., Fleming, A.J., Zhu, X.G., Wang, P., 2024. Regulatory NADH dehydrogenase-like complex optimizes C4 photosynthetic carbon flow and cellular redox in maize. New Phytol. 241, 82-101.
|
Zhang, W., Gong, J., Zhang, Z., Song, L., Lambers, H., Zhang, S., Dong, J., Dong, X., Hu, Y., 2023. Soil phosphorus availability alters the correlations between root phosphorus-uptake rates and net photosynthesis of dominant C3 and C4 species in a typical temperate grassland of Northern China. New Phytol. 240, 157-172.
|
Zhang, Y., Li, T.T., Wang, L.F., Guo, J.X., Lu, K.K., Song, R.F., Zuo, J.X., Chen, H.H., Liu, W.C., 2022b. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis. Plant J. 111, 269-281.
|
Zheng, B., Li, Y.T., Wu, Q.P., Zhao, W., Ren, T.H., Zhang, X.H., Li, G., Ning, T.Y., Zhang, Z.S., 2023. Maize (Zea mays L.) planted at higher density utilizes dynamic light more efficiently. Plant Cell Environ. 46, 3305-3322.
|
Zhong, Y., Pan, X., Wang, R., Xu, J., Guo, J., Yang, T., Zhao, J., Nadeem, F., Liu, X., Shan, H., et al., 2020. ZmCCD10a encodes a distinct type of carotenoid cleavage dioxygenase and enhances plant tolerance to low phosphate. Plant Physiol. 184, 374-392.
|
Zhong, Y., Wang, Y., Guo, J., Zhu, X., Shi, J., He, Q., Liu, Y., Wu, Y., Zhang, L., Lv. Q., et al., 2018. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytol. 219, 135-148.
|
Zhou, J., Jiao, F., Wu, Z., Li, Y., Wang, X., He, X., Zhong, W., Wu, P., 2008. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol. 146, 1673-1686.
|
Zhu, J., Zhou, Y., Li, J., Li, H., 2021. Genome-wide investigation of the phospholipase C gene family in Zea mays. Front. Genet. 11, 611414.
|
Zou, T., Zhang, X., Davidson, E.A., 2022. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81-87.
|