Acosta, I.F., Laparra, H., Romero, S.P., Schmelz, E., Hamberg, M., Mottinger, J.P., Moreno, M.A., Dellaporta, S.L., 2009. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323, 262-265.
|
Alemany, A., Florescu, M., Baron, C.S., Peterson-Maduro, J., van Oudenaarden, A., 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108-112.
|
Arendt, D., Musser, J.M., Baker, C.V.H., Bergman, A., Cepko, C., Erwin, D.H., Pavlicev, M., Schlosser, G., Widder, S., Laubichler, M.D., Wagner, G.P., 2016. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744-757.
|
Barna, M., Karbstein, K., Tollervey, D., Ruggero, D., Brar, G., Greer, E.L., Dinman, J.D., 2022. The promises and pitfalls of specialized ribosomes. Mol. Cell 82, 2179-2184.
|
Baul, S., Tanvir Ahmed, K., Jiang, Q., Wang, G., Li, Q., Yong, J., Zhang, W., 2024. Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks. Briefings Bioinf. 25, bbae316.
|
Baysoy, A., Bai, Z., Satija, R., Fan, R., 2023. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695-713.
|
Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M.T., Aeschbacher, R.A., 1993. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57-70.
|
Bensen, R.J., Johal, G.S., Crane, V.C., Tossberg, J.T., Schnable, P.S., Meeley, R.B., Briggs, S.P., 1995. Cloning and characterization of the maize An1 gene. Plant Cell 7, 75-84.
|
Best, N., Dilkes, B., 2023. Genetic evidence that brassinosteroids suppress pistils in the maize tassel independent of the jasmonic acid pathway. Plant Direct 7, e501.
|
Best, N.B., Dilkes, B.P., 2022. Transcriptional responses to gibberellin in the maize tassel and control by DELLA domain proteins. Plant J. 112, 493-517.
|
Best, N.B., Hartwig, T., Budka, J., Fujioka, S., Johal, G., Schulz, B., Dilkes, B.P., 2016. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol. 171, 2633-2647.
|
Birnbaum, K., Jung, J.W., Wang, J.Y., Lambert, G.M., Hirst, J.A., Galbraith, D.W., Benfey, P.N., 2005. Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat. Methods 2, 615-619.
|
Birnbaum, K., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., Benfey, P.N., 2003. A gene expression map of the Arabidopsis root. Science 302, 1956-1960.
|
Bolduc, N., Yilmaz, A., Mejia-Guerra, M.K., Morohashi, K., O'Connor, D., Grotewold, E., Hake, S., 2012. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev. 26, 1685-1690.
|
Bommert, P., Je, B.I., Goldshmidt, A., Jackson, D., 2013. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502, 555-558.
|
Bommert, P., Lunde, C., Nardmann, J., Vollbrecht, E., Running, M., Jackson, D., Hake, S., Werr, W., 2005. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132, 1235-1245.
|
Bommert, P., Nagasawa, N.S., Jackson, D., 2013. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat. Genet. 45, 334-337.
|
Bortiri, E., Chuck, G., Vollbrecht, E., Rocheford, T., Martienssen, R., Hake, S., 2006. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18, 574-585.
|
Bortiri, E., Hake, S., 2007. Flowering and determinacy in maize. J. Exp. Bot. 58, 909-916.
|
Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., Simon, R., 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617-619.
|
Brooks, S.M., Alper, H.S., 2021. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 12, 1390.
|
Buoso, S., Tomasi, N., Said-Pullicino, D., Arkoun, M., Yvin, J.-C., Pinton, R., Zanin, L., 2021. Responses of hydroponically grown maize to various urea to ammonium ratios: physiological and molecular data. Data Brief 36, 107076.
|
Calderon-Urrea, A., Dellaporta, S.L., 1999. Cell death and cell protection genes determine the fate of pistils in maize. Development 126, 435-441.
|
Canto-Pastor, A., Kajala, K., Shaar-Moshe, L., Manzano, C., Timilsena, P., De Bellis, D., Gray, S., Holbein, J., Yang, H., Mohammad, S., et al., 2024. A suberized exodermis is required for tomato drought tolerance. Nat. Plants 10, 118-130.
|
Cao, Y., Ma, J., Han, S., Hou, M., Wei, X., Zhang, X., Zhang, Z.J., Sun, S., Ku, L., Tang, J., et al., 2023. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnol. J. 21, 1839-1859.
|
Cao, Z.-J., Gao, G., 2022. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458-1466.
|
Chakraborty, N., Sharma, P., Kanyuka, K., Pathak, R.R., Choudhury, D., Hooley, R., Raghuram, N., 2015. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana. Plant Mol. Biol. 89, 559-576.
|
Chen, W., Chen, L., Zhang, X., Yang, N., Guo, J., Wang, M., Ji, S., Zhao, X., Yin, P., Cai, L., et al., 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375, eabg7985.
|
Chen, Y., Wang, Y., Chen, Y., Cheng, Y., Wei, Y., Li, Y., Wang, J., Wei, Y., Chan, T.-F., Li, Y., 2022. Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis. Nat. Commun. 13, 6735.
|
Chen, Z., Gallavotti, A., 2021. Improving architectural traits of maize inflorescences. Mol. Breed. 41, 21.
|
Chen, Z., Li, W., Gaines, C., Buck, A., Galli, M., Gallavotti, A., 2021. Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences. Nat. Commun. 12, 2378.
|
Christensen, S.K., Dagenais, N., Chory, J., Weigel, D., 2000. Regulation of auxin response by the protein kinase PINOID. Cell 100, 469-478.
|
Chuang, C.F., Running, M.P., Williams, R.W., Meyerowitz, E.M., 1999. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. 13, 334-344.
|
Chuck, G., Meeley, R., Hake, S., 2008. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 135, 3013-3019.
|
Chuck, G., Meeley, R., Irish, E., Sakai, H., Hake, S., 2007. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet. 39, 1517-1521.
|
Chuck, G., Muszynski, M., Kellogg, E., Hake, S., Schmidt, R.J., 2002. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298, 1238-1241.
|
Chuck, G.S., Brown, P.J., Meeley, R., Hake, S., 2014. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc. Natl. Acad. Sci. U. S. A. 111, 18775-18780.
|
Claeys, H., Vi, S.L., Xu, X., Satoh-Nagasawa, N., Eveland, A.L., Goldshmidt, A., Feil, R., Beggs, G.A., Sakai, H., Brennan, R.G., et al., 2019. Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity. Nat. Plants 5, 352-357.
|
Clark, S.E., Running, M.P., Meyerowitz, E.M., 1995. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121, 2057-2067.
|
Clark, S.E., Williams, R.W., Meyerowitz, E.M., 1997. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89, 575-585.
|
Cui, H., Wang, C., Maan, H., Pang, K., Luo, F., Duan, N., Wang, B., 2024. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470-1480.
|
Deal, R.B., Henikoff, S., 2010. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18, 1030-1040.
|
Deal, R.B., Henikoff, S., 2011. The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 6, 56-68.
|
Delannoy, E., Batardiere, B., Pateyron, S., Soubigou-Taconnat, L., Chiquet, J., Colcombet, J., Lang, J., 2023. Cell specialization and coordination in Arabidopsis leaves upon pathogenic attack revealed by scRNA-seq. Plant Commun. 4, 100676.
|
DeLong, A., Calderon-Urrea, A., Dellaporta, S.L., 1993. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74, 757-768.
|
Denyer, T., Ma, X., Klesen, S., Scacchi, E., Nieselt, K., Timmermans, M.C.P., 2019. Spatiotemporal Developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell rna sequencing. Dev. Cell 48, 840-852.
|
Diss, G., Ascencio, D., DeLuna, A., Landry, C.R., 2014. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J Exp Zool B Mol Dev Evol 322, 488-499.
|
Dobrovolskaya, O., Pont, C., Sibout, R., Martinek, P., Badaeva, E., Murat, F., Chosson, A., Watanabe, N., Prat, E., Gautier, N., et al., 2015. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol. 167, 189-199.
|
Doerner, P., 2003. Plant Meristems: A merry-go-round of signals review. Curr. Biol. 13, R368-R374.
|
Dolan, L., 1999. Root Development in Arabidopsis, in: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (Eds.), Development: Genetics, Epigenetics and Environmental Regulation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 133-144.
|
Dona, M., Bradamante, G., Bogojevic, Z., Gutzat, R., Streubel, S., Mosiolek, M., Dolan, L., Mittelsten Scheid, O., 2023. A versatile CRISPR-based system for lineage tracing in living plants. Plant J. 115, 1169-1184.
|
Dong, Z., Hu, G., Chen, Q., Shemyakina, E.A., Chau, G., Whipple, C.J., Fletcher, J.C., Chuck, G., 2024. A regulatory network controlling developmental boundaries and meristem fates contributed to maize domestication. Nat. Genet. 56, 2528-2537.
|
Dorrity, M.W., Alexandre, C.M., Hamm, M.O., Vigil, A.-L., Fields, S., Queitsch, C., Cuperus, J.T., 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun. 12, 3334.
|
Du, Y., Liu, L., Li, M., Fang, S., Shen, X., Chu, J., Zhang, Z., 2017. UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytol. 214, 721-733.
|
Durian, G., Sedaghatmehr, M., Matallana-Ramirez, L.P., Schilling, S.M., Schaepe, S., Guerra, T., Herde, M., Witte, C.-P., Mueller-Roeber, B., Schulze, W.X., et al., 2020. Calcium-dependent protein kinase cpk1 controls cell death by in vivo phosphorylation of senescence master regulator ORE1. Plant Cell 32, 1610-1625.
|
Evans, M.M., Barton, M.K., 1997. Genetics of angiosperm shoot apical meristem development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 673-701.
|
Eveland, A.L., Goldshmidt, A., Pautler, M., Morohashi, K., Liseron-Monfils, C., Lewis, M.W., Kumari, S., Hiraga, S., Yang, F., Unger-Wallace, E., et al., 2014. Regulatory modules controlling maize inflorescence architecture. Genome Res. 24, 431-443.
|
Farooq, M.A., Gao, S., Hassan, M.A., Huang, Z., Rasheed, A., Hearne, S., Prasanna, B., Li, X., Li, H., 2024. Artificial intelligence in plant breeding. Trends Genet. 40, 891-908.
|
Feng, W., Gao, P., Wang, X., 2024. AI breeder: Genomic predictions for crop breeding. New Crops 1, 100010.
|
Fletcher, J.C., 2018. The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization. Plants (Basel) 7, 87.
|
Fletcher, J.C., Brand, U., Running, M.P., Simon, R., Meyerowitz, E.M., 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911-1914.
|
Fujioka, S., Yamane, H., Spray, C.R., Gaskin, P., Macmillan, J., Phinney, B.O., Takahashi, N., 1988. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol. 88, 1367-1372.
|
Gallavotti, A., Barazesh, S., Malcomber, S., Hall, D., Jackson, D., Schmidt, R.J., McSteen, P., 2008. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc. Natl. Acad. Sci. U. S. A. 105, 15196-15201.
|
Gallavotti, A., Long, J.A., Stanfield, S., Yang, X., Jackson, D., Vollbrecht, E., Schmidt, R.J., 2010. The control of axillary meristem fate in the maize ramosa pathway. Development 137, 2849-2856.
|
Gallavotti, A., Zhao, Q., Kyozuka, J., Meeley, R.B., Ritter, M.K., Doebley, J.F., Pe, M.E., Schmidt, R.J., 2004. The role of barren stalk1 in the architecture of maize. Nature 432, 630-635.
|
Galli, M., Liu, Q., Moss, B.L., Malcomber, S., Li, W., Gaines, C., Federici, S., Roshkovan, J., Meeley, R., Nemhauser, J.L., Gallavotti, A., 2015. Auxin signaling modules regulate maize inflorescence architecture. Proc. Natl. Acad. Sci. U. S. A. 112, 13372-13377.
|
Galloway, A.F., Knox, P., Krause, K., 2020. Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. New Phytol. 225, 1461-1469.
|
Genuth, N.R., Shi, Z., Kunimoto, K., Hung, V., Xu, A.F., Kerr, C.H., Tiu, G.C., Oses-Prieto, J.A., Salomon-Shulman, R.E.A., Axelrod, J.D., et al., 2022. A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production. Nat. Commun. 13, 5491.
|
Greb, T., Lohmann, J.U., 2016. Plant Stem Cells. Curr. Biol. 26, R816-821.
|
Guillotin, B., Rahni, R., Passalacqua, M., Mohammed, M.A., Xu, X., Raju, S.K., Ramirez, C.O., Jackson, D., Groen, S.C., Gillis, J., Birnbaum, K.D., 2023. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617, 785-791.
|
Han, E., Geng, Z., Qin, Y., Wang, Y., Ma, S., 2024. Single-cell network analysis reveals gene expression programs for Arabidopsis root development and metabolism. Plant Commun. 5, 100978.
|
Hartwig, T., Chuck, G.S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D.P., Choe, S., Johal, G.S., Schulz, B., 2011. Brassinosteroid control of sex determination in maize. Proc. Natl. Acad. Sci. U. S. A. 108, 19814-19819.
|
Hayward, A.P., Moreno, M.A., Howard, T.P., 3rd, Hague, J., Nelson, K., Heffelfinger, C., Romero, S., Kausch, A.P., Glauser, G., Acosta, I.F., et al., 2016. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Sci. Adv. 2, e1600991.
|
Heidstra, R., Sabatini, S., 2014. Plant and animal stem cells: similar yet different. Nat. Rev. Mol. Cell Biol. 15, 301-312.
|
Heijmans, K., Morel, P., Vandenbussche, M., 2012. MADS-box Genes and Floral Development: the Dark Side. J. Exp. Bot. 63, 5397-5404.
|
Hochholdinger, F., 2009. The Maize Root System: Morphology, Anatomy, and Genetics, in: Bennetzen, J.L., Hake, S.C. (Eds.), Handbook of Maize: Its Biology. Springer New York, New York, NY, pp. 145-160.
|
Hong, J.H., Savina, M., Du, J., Devendran, A., Kannivadi Ramakanth, K., Tian, X., Sim, W.S., Mironova, V.V., Xu, J., 2017. A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 170, 102-113.e114.
|
Hong, L., Tang, D., Zhu, K., Wang, K., Li, M., Cheng, Z., 2012. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell 24, 577-588.
|
Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., Coupland, G., 2016. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev. Cell 37, 254-266.
|
Irish, E., 1997. Class II tassel seed mutations provide evidence for multiple types of inflorescence meristems in maize (Poaceae). Am. J. Bot. 84, 1502.
|
Irish, E.E., Langdale, J.A., Nelson, T.M., 1994. Interactions between tassel seed genes and other sex determining genes in maize. Dev. Genet. 15, 155-171.
|
Ishida, T., Tabata, R., Yamada, M., Aida, M., Mitsumasu, K., Fujiwara, M., Yamaguchi, K., Shigenobu, S., Higuchi, M., Tsuji, H., et al., 2014. Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. EMBO Rep. 15, 1202-1209.
|
Je, B.I., Gruel, J., Lee, Y.K., Bommert, P., Arevalo, E.D., Eveland, A.L., Wu, Q., Goldshmidt, A., Meeley, R., Bartlett, M., et al., 2016. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat. Genet. 48, 785-791.
|
Je, B.I., Xu, F., Wu, Q., Liu, L., Meeley, R., Gallagher, J.P., Corcilius, L., Payne, R.J., Bartlett, M.E., Jackson, D., 2018. The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. Elife 7, e35673.
|
Jean-Baptiste, K., McFaline-Figueroa, J.L., Alexandre, C.M., Dorrity, M.W., Saunders, L., Bubb, K.L., Trapnell, C., Fields, S., Queitsch, C., Cuperus, J.T., 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 31, 993-1011.
|
Jeong, S., Trotochaud, A.E., Clark, S.E., 1999. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925-1934.
|
Ji, L., Liu, X., Yan, J., Wang, W., Yumul, R.E., Kim, Y.J., Dinh, T.T., Liu, J., Cui, X., Zheng, B., et al., 2011. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLos Genet. 7, e1001358.
|
Jia, H., Li, M., Li, W., Liu, L., Jian, Y., Yang, Z., Shen, X., Ning, Q., Du, Y., Zhao, R., et al., 2020. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat. Commun. 11, 988.
|
Jiao, Y., Lori Tausta, S., Gandotra, N., Sun, N., Liu, T., Clay, N.K., Ceserani, T., Chen, M., Ma, L., Holford, M., et al., 2009. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat. Genet. 41, 258-263.
|
Kalhor, R., Kalhor, K., Mejia, L., Leeper, K., Graveline, A., Mali, P., Church, G.M., 2018. Developmental barcoding of whole mouse via homing CRISPR. Science 361, eaat9804.
|
Kerstetter, R.A., Laudencia-Chingcuanco, D., Smith, L.G., Hake, S., 1997. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124, 3045-3054.
|
Kidokoro, S., Shinozaki, K., Yamaguchi-Shinozaki, K., 2022. Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci. 27, 922-935.
|
Kim, J.H., Kende, H., 2004. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 101, 13374-13379.
|
Kinoshita, A., Betsuyaku, S., Osakabe, Y., Mizuno, S., Nagawa, S., Stahl, Y., Simon, R., Yamaguchi-Shinozaki, K., Fukuda, H., Sawa, S., 2010. RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137, 3911-3920.
|
Klein, H., Gallagher, J., Demesa-Arevalo, E., Abraham-Juarez, M.J., Heeney, M., Feil, R., Lunn, J.E., Xiao, Y., Chuck, G., Whipple, C., et al., 2022. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc. Natl. Acad. Sci. U. S. A. 119.
|
Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., Doke, N., Yoshioka, H., 2007. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19, 1065-1080.
|
Komatsu, K., Maekawa, M., Ujiie, S., Satake, Y., Furutani, I., Okamoto, H., Shimamoto, K., Kyozuka, J., 2003. LAX and SPA: major regulators of shoot branching in rice. Proc. Natl. Acad. Sci. U. S. A. 100, 11765-11770.
|
Kosentka, P.Z., Overholt, A., Maradiaga, R., Mitoubsi, O., Shpak, E.D., 2019. EPFL signals in the boundary region of the sam restrict its size and promote leaf initiation. Plant Physiol. 179, 265-279.
|
Kwon, C.-T., Tang, L., Wang, X., Gentile, I., Hendelman, A., Robitaille, G., Van Eck, J., Xu, C., Lippman, Z.B., 2022. Dynamic evolution of small signalling peptide compensation in plant stem cell control. Nat. Plants 8, 346-355.
|
Laudencia-Chingcuanco, D., Hake, S., 2002. The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development 129, 2629-2638.
|
Laux, T., Mayer, K.F., Berger, J., Jurgens, G., 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96.
|
Lee, B.H., Johnston, R., Yang, Y., Gallavotti, A., Kojima, M., Travencolo, B.A., Costa Lda, F., Sakakibara, H., Jackson, D., 2009. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol. 150, 205-216.
|
Lee, D.Y., An, G., 2012. Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J. 69, 445-461.
|
Lee, J., Shah, M., Ballouz, S., Crow, M., Gillis, J., 2020. CoCoCoNet: conserved and comparative co-expression across a diverse set of species. Nucleic Acids Res. 48, W566-w571.
|
Leonard, A., Holloway, B., Guo, M., Rupe, M., Yu, G., Beatty, M., Zastrow-Hayes, G., Meeley, R., Llaca, V., Butler, K., et al., 2014. tassel-less1 encodes a boron channel protein required for inflorescence development in maize. Plant Cell Physiol. 55, 1044-1054.
|
Li, J., Wang, J., Zhang, P., Wang, R., Mei, Y., Sun, Z., Fei, L., Jiang, M., Ma, L., E, W., et al., 2022. Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types. Nat. Genet. 54, 1711-1720.
|
Li, P., Liu, Q., Wei, Y., Xing, C., Xu, Z., Ding, F., Liu, Y., Lu, Q., Hu, N., Wang, T., et al., 2024. Transcriptional landscape of cotton roots in response to salt stress at single-cell resolution. Plant Commun. 5, 100740.
|
Li, Q., Liu, B., 2017. Genetic regulation of maize flower development and sex determination. Planta 245, 1-14.
|
Li, S., Gao, F., Xie, K., Zeng, X., Cao, Y., Zeng, J., He, Z., Ren, Y., Li, W., Deng, Q., et al., 2016. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol. J. 14, 2134-2146.
|
Li, S., Meng, S., Weng, J., Wu, Q., 2022. Fine-tuning shoot meristem size to feed the world. Trends Plant Sci. 27, 355-363.
|
Li, X., Wang, C.-Y., 2021. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral Sci. 13, 36.
|
Li, X., Zhang, X., Gao, S., Cui, F., Chen, W., Fan, L., Qi, Y., 2022. Single-cell RNA sequencing reveals the landscape of maize root tips and assists in identification of cell type-specific nitrate-response genes. Crop J. 10, 1589-1600.
|
Libault, M., Pingault, L., Zogli, P., Schiefelbein, J., 2017. Plant systems biology at the single-cell level. Trends Plant Sci. 22, 949-960.
|
Liu, L., Chen, A., Li, Y., Mulder, J., Heyn, H., Xu, X., 2024a. Spatiotemporal omics for biology and medicine. Cell 187, 4488-4519.
|
Liu, L., Du, Y., Shen, X., Li, M., Sun, W., Huang, J., Liu, Z., Tao, Y., Zheng, Y., Yan, J., Zhang, Z., 2015. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet. 11, e1005670.
|
Liu, L., Gallagher, J., Arevalo, E.D., Chen, R., Skopelitis, T., Wu, Q., Bartlett, M., Jackson, D., 2021. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287-294.
|
Liu, L., Zhan, J., Yan, J., 2024b. Engineering the future cereal crops with big biological data: toward intelligence-driven breeding by design. J. Genet. Genomics 51, 781-789.
|
Liu, Q., Galli, M., Liu, X., Federici, S., Buck, A., Cody, J., Labra, M., Gallavotti, A., 2019. NEEDLE1 encodes a mitochondria localized ATP-dependent metalloprotease required for thermotolerant maize growth. Proc. Natl. Acad. Sci. U. S. A. 116, 19736-19742.
|
Liu, T., Li, J., Yu, L., Sun, H.-X., Li, J., Dong, G., Hu, Y., Li, Y., Shen, Y., Wu, J., Gu, Y., 2021. Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans. Cell Discovery 7, 8.
|
Liu, X., Galli, M., Camehl, I., Gallavotti, A., 2019. RAMOSA1 ENHANCER LOCUS2-Mediated Transcriptional Repression Regulates Vegetative and Reproductive Architecture. Plant Physiol. 179, 348-363.
|
Liu, X., Shen, Q., Zhang, S., 2023. Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network. Genome Res. 33, 96-111.
|
Long, J.A., Moan, E.I., Medford, J.I., Barton, M.K., 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66-69.
|
Long, J.A., Ohno, C., Smith, Z.R., Meyerowitz, E.M., 2006. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312, 1520-1523.
|
Lu, X., Zhang, Q., Wang, Z., Cheng, X., Yan, H., Cai, S., Zhang, H., Liu, Q., 2024a. Development of an inducible DNA barcoding system to understand lineage changes in Arabidopsis regeneration. Dev. Cell.
|
Lu, Y., Li, M., Gao, Z., Ma, H., Chong, Y., Hong, J., Wu, J., Wu, D., Xi, D., Deng, W., 2024b. Innovative insights into single-cell technologies and multi-omics integration in livestock and poultry. Int. J. Mol. Sci. 25, 12940.
|
Lunde, C., Kimberlin, A., Leiboff, S., Koo, A.J., Hake, S., 2019. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Commun. Biol. 2, 114.
|
Luo, H., Meng, D., Liu, H., Xie, M., Yin, C., Liu, F., Dong, Z., Jin, W., 2020. Ectopic expression of the transcriptional regulator silky3 causes pleiotropic meristem and sex determination defects in maize inflorescences. Plant Cell 32, 3750-3773.
|
Makarevitch, I., Thompson, A., Muehlbauer, G.J., Springer, N.M., 2012. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One 7, e30798.
|
Marand, A.P., Chen, Z., Gallavotti, A., Schmitz, R.J., 2021. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041-3055.
|
Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., Laux, T., 1998. Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell 95, 805-815.
|
McKenna, A., Findlay, G.M., Gagnon, J.A., Horwitz, M.S., Schier, A.F., Shendure, J., 2016. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907.
|
Medford, J.I., Behringer, F.J., Callos, J.D., Feldmann, K.A., 1992. Normal and abnormal development in the Arabidopsis vegetative shoot apex. Plant Cell 4, 631-643.
|
Meeley, R., Hake, S., 1998. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12, 1145-1154.
|
Michniewicz, M., Zago, M.K., Abas, L., Weijers, D., Schweighofer, A., Meskiene, I., Heisler, M.G., Ohno, C., Zhang, J., Huang, F., et al., 2007. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130, 1044-1056.
|
Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., Ashikari, M., 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545-549.
|
Morohashi, K., Ahkami, A.H., Coate, J.E., Libault, M., 2024. Editorial: cellular heterogeneity in plants. Front. Plant Sci. 15, 1417460.
|
Muller, R., Bleckmann, A., Simon, R., 2008. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20, 934-946.
|
Nakazono, M., Qiu, F., Borsuk, L.A., Schnable, P.S., 2003. Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15, 583-596.
|
Nardmann, J., Werr, W., 2006. The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol. Biol. Evol. 23, 2492-2504.
|
Nguyen, T.N.H., Horowitz, L.F., Krilov, T., Lockhart, E., Kenerson, H.L., Gujral, T.S., Yeung, R.S., Arroyo-Curras, N., Folch, A., 2024. Label-free, real-time monitoring of cytochrome C drug responses in microdissected tumor biopsies with a multi-well aptasensor platform. Sci. Adv. 10, eadn5875.
|
Ohmori, Y., Tanaka, W., Kojima, M., Sakakibara, H., Hirano, H.Y., 2013. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. Plant Cell 25, 229-241.
|
Ortiz-Ramirez, C., Guillotin, B., Xu, X., Rahni, R., Zhang, S., Yan, Z., Coqueiro Dias Araujo, P., Demesa-Arevalo, E., Lee, L., Van Eck, J., et al., 2021. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374, 1247-1252.
|
Passalacqua, M.J., Gillis, J., 2024. Coexpression enhances cross-species integration of single-cell RNA sequencing across diverse plant species. Nat. Plants 10, 1075-1080.
|
Pautler, M., Eveland, A.L., LaRue, T., Yang, F., Weeks, R., Lunde, C., Je, B.I., Meeley, R., Komatsu, M., Vollbrecht, E., et al., 2015. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell 27, 104-120.
|
Perli, S.D., Cui, C.H., Lu, T.K., 2016. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 353, aag0511.
|
Phillips, K.A., Skirpan, A.L., Liu, X., Christensen, A.R., Slewinski, T.L., Hudson, C., Barazesh, S., Cohen, J.D., Malcomber, S.T., McSteen, P., 2011. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23, 550 - 566.
|
PHIPPS, I.F., 1928. HERITABLE CHARACTERS IN MAIZE: XXXI-tassel seed-4. Journal of Heredity 19, 399-404.
|
Rae, G.M., David, K., Wood, M., 2013. The dormancy marker DRM1/ARP associated with dormancy but a broader role in Planta. Dev. Biol. 2013, 1-12.
|
Ren, D., Yang, H., Zhang, S., 2002. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 277, 559-565.
|
Rodriguez-Leal, D., Xu, C., Kwon, C.-T., Soyars, C., Demesa-Arevalo, E., Man, J., Liu, L., Lemmon, Z.H., Jones, D.S., Van Eck, J., et al., 2019. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat. Genet. 51, 786-792.
|
Rogers, E.D., Benfey, P.N., 2015. Regulation of plant root system architecture: implications for crop advancement. Curr. Opin. Biotechnol. 32, 93-98.
|
Satoh-Nagasawa, N., Nagasawa, N., Malcomber, S., Sakai, H., Jackson, D., 2006. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441, 227-230.
|
Satterlee, J.W., Evans, L.J., Conlon, B.R., Conklin, P., Martinez-Gomez, J., Yen, J.R., Wu, H., Sylvester, A.W., Specht, C.D., Cheng, J., et al., 2023. A Wox3-patterning module organizes planar growth in grass leaves and ligules. Nat. Plants 9, 720-732.
|
Satterlee, J.W., Strable, J., Scanlon, M.J., 2020. Plant stem-cell organization and differentiation at single-cell resolution. Proc. Natl. Acad. Sci. U. S. A. 117, 33689-33699.
|
Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jurgens, G., Laux, T., 2000. The Stem Cell Population of Arabidopsis Shoot Meristems Is Maintained by a Regulatory Loop between the CLAVATA and WUSCHEL Genes. Cell 100, 635-644.
|
Senn, A., Pilet, P.-E., 1980. Isolation and some morphological properties of maize root protoplasts. Z. Pflanzenphysiol. 100, 299-310.
|
Seyfferth, C., Renema, J., Wendrich, J.R., Eekhout, T., Seurinck, R., Vandamme, N., Blob, B., Saeys, Y., Helariutta, Y., Birnbaum, K.D., De Rybel, B., 2021. Advances and opportunities in single-cell transcriptomics for plant research. Annu. Rev. Plant Biol. 72, 847-866.
|
Shahan, R., Hsu, C.-W., Nolan, T.M., Cole, B.J., Taylor, I.W., Greenstreet, L., Zhang, S., Afanassiev, A., Vlot, A.H.C., Schiebinger, G., et al., 2022. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev. Cell 57, 543-560.e549.
|
Shaw, R., Tian, X., Xu, J., 2021. Single-cell transcriptome analysis in plants: advances and challenges. Mol. Plant 14, 115-126.
|
Shinohara, H., Moriyama, Y., Ohyama, K., Matsubayashi, Y., 2012. Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs. Plant J. 70, 845-854.
|
Shu, H., Zhou, J., Lian, Q., Li, H., Zhao, D., Zeng, J., Ma, J., 2021. Modeling gene regulatory networks using neural network architectures. Nat. Comput. Sci. 1, 491-501.
|
Singh, S., Praveen, A., Dudha, N., Sharma, V.K., Bhadrecha, P., 2024. Single-cell transcriptomics: a new frontier in plant biotechnology research. Plant Cell Rep. 43, 294.
|
Skirpan, A., Culler, A.H., Gallavotti, A., Jackson, D., Cohen, J.D., McSteen, P., 2009. BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant Cell Physiol. 50, 652-657.
|
Skirpan, A., Wu, X., McSteen, P., 2008. Genetic and physical interaction suggest that BARREN STALK 1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development. Plant J. 55, 787-797.
|
Smith, S., De Smet, I., 2012. Root system architecture: insights from Arabidopsis and cereal crops. Philos. Trans. R Soc. Lond. B Biol. Sci. 367, 1441-1452.
|
Steeves, T.A., Sussex, I.M., 1989. Patterns in Plant Development, 2 ed. Cambridge University Press, Cambridge.
|
Steffensen, D.M., 1968. A reconstruction of cell development in the shoot apex of maize. Am. J. Bot. 55, 354-369.
|
Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.Y., Dolezal, K., Schlereth, A., Jurgens, G., Alonso, J.M., 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177-191.
|
Strable, J., Wallace, J.G., Unger-Wallace, E., Briggs, S., Bradbury, P.J., Buckler, E.S., Vollbrecht, E., 2017. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell 29, 1622-1641.
|
Sun, X., Cahill, J., Van Hautegem, T., Feys, K., Whipple, C., Novak, O., Delbare, S., Versteele, C., Demuynck, K., De Block, J., et al., 2017. Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nat. Commun. 8, 14752.
|
Sun, Y., Dong, L., Kang, L., Zhong, W., Jackson, D., Yang, F., 2024. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation. Mol. Plant 17, 1019-1037.
|
Suzaki, T., Ohneda, M., Toriba, T., Yoshida, A., Hirano, H.Y., 2009. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice. PLoS Genet. 5, e1000693.
|
Suzaki, T., Sato, M., Ashikari, M., Miyoshi, M., Nagato, Y., Hirano, H.Y., 2004. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131, 5649-5657.
|
Suzaki, T., Yoshida, A., Hirano, H.Y., 2008. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. Plant Cell 20, 2049-2058.
|
Tabuchi, H., Zhang, Y., Hattori, S., Omae, M., Shimizu-Sato, S., Oikawa, T., Qian, Q., Nishimura, M., Kitano, H., Xie, H., et al., 2011. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23, 3276-3287.
|
Taguchi-Shiobara, F., Yuan, Z., Hake, S., Jackson, D., 2001. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 15, 2755-2766.
|
Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., Ellinor, P.T., 2023. Transfer learning enables predictions in network biology. Nature 618, 616-624.
|
Thompson, B.E., Bartling, L., Whipple, C., Hall, D.H., Sakai, H., Schmidt, R., Hake, S., 2009. bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell 21, 2578-2590.
|
Thompson, B.E., Basham, C., Hammond, R., Ding, Q., Kakrana, A., Lee, T.F., Simon, S.A., Meeley, R., Meyers, B.C., Hake, S., 2014. The dicer-like1 homolog fuzzy tassel is required for the regulation of meristem determinacy in the inflorescence and vegetative growth in maize. Plant Cell 26, 4702-4717.
|
Tsuda, K., Abraham-Juarez, M.-J., Maeno, A., Dong, Z., Aromdee, D., Meeley, R., Shiroishi, T., Nonomura, K.-i., Hake, S., 2017. KNOTTED1 cofactors, BLH12 and BLH14, regulate internode patterning and vein anastomosis in maize. Plant Cell 29, 1105-1118.
|
Tsuda, K., Ito, Y., Sato, Y., Kurata, N., 2011. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. Plant Cell 23, 4368-4381.
|
Tucker, M.R., Laux, T., 2007. Connecting the paths in plant stem cell regulation. Trends Cell Biol. 17, 403-410.
|
Uchida, N., Shimada, M., Tasaka, M., 2013. ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol. 54, 343-351.
|
Van Deynze, A., Zamora, P., Delaux, P.M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K.D., et al., 2018. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol. 16, e2006352.
|
van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K.R., Chaffer, C.L., Pattabiraman, D., et al., 2018. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716-729.
|
Vandereyken, K., Sifrim, A., Thienpont, B., Voet, T., 2023. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494-515.
|
Vollbrecht, E., Reiser, L., Hake, S., 2000. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127, 3161-3172.
|
Vollbrecht, E., Schmidt, R.J., 2009. Development of the Inflorescences, in: Bennetzen, J.L., Hake, S.C. (Eds.), Handbook of Maize: Its Biology. Springer New York, New York, NY, pp. 13-40.
|
Vollbrecht, E., Springer, P.S., Goh, L., Buckler Iv, E.S., Martienssen, R., 2005. Architecture of floral branch systems in maize and related grasses. Nature 436, 1119-1126.
|
Wang, B., Lin, Z., Li, X., Zhao, Y., Zhao, B., Wu, G., Ma, X., Wang, H., Xie, Y., Li, Q., et al., 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52, 565-571.
|
Wang, H., Chen, W., Xu, Z., Chen, M., Yu, D., 2023. Functions of WRKYs in plant growth and development. Trends Plant Sci. 28, 630-645.
|
Wang, J., Lin, Z., Zhang, X., Liu, H., Zhou, L., Zhong, S., Li, Y., Zhu, C., Lin, Z., 2019. krn1, a major quantitative trait locus for kernel row number in maize. New Phytol. 223, 1634-1646.
|
Wang, J., Sun, H., Jiang, M., Li, J., Zhang, P., Chen, H., Mei, Y., Fei, L., Lai, S., Han, X., et al., 2021. Tracing cell-type evolution by cross-species comparison of cell atlases. Cell Rep. 34, 108803.
|
Wang, J., Ye, F., Chai, H., Jiang, Y., Wang, T., Ran, X., Xia, Q., Xu, Z., Fu, Y., Zhang, G., et al., 2024. Advances and applications in single-cell and spatial genomics. Sci. China Life Sci. doi: 10.1007/s11427-024-2770-x.
|
Wang, L., Yu, P., Lyu, J., Hu, Y., Han, C., Bai, M.Y., Fan, M., 2021. BZR1 physically interacts with SPL9 to regulate the vegetative phase change and cell elongation in Arabidopsis. Int. J. Mol. Sci. 22, 10415.
|
Wang, Y., Huan, Q., Li, K., Qian, W., 2021. Single-cell transcriptome atlas of the leaf and root of rice seedlings. J. Genet. Genomics 48, 881-898.
|
Wang, Y., Luo, Y., Guo, X., Li, Y., Yan, J., Shao, W., Wei, W., Wei, X., Yang, T., Chen, J., et al., 2024. A spatial transcriptome map of the developing maize ear. Nat. Plants 10, 815-827.
|
Winkler, R.G., Freeling, M., 1994. Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, Dwarf8 and Dwarf9. Planta 193, 341-348.
|
Woodward, J.B., Abeydeera, N.D., Paul, D., Phillips, K., Rapala-Kozik, M., Freeling, M., Begley, T.P., Ealick, S.E., McSteen, P., Scanlon, M.J., 2010. A maize thiamine auxotroph is defective in shoot meristem maintenance. Plant Cell 22, 3305-3317.
|
Wu, B., Xu, W., Wu, K., Li, Y., Hu, M., Feng, C., Zhu, C., Zheng, J., Cui, X., Li, J., et al., 2024. Single-cell analysis of the amphioxus hepatic caecum and vertebrate liver reveals genetic mechanisms of vertebrate liver evolution. Nat. Ecol. Evol. 8, 1972-1990.
|
Wu, Q., Xu, F., Jackson, D., 2018. All together now, a magical mystery tour of the maize shoot meristem. Curr. Opin. Plant Biol. 45, 26-35.
|
Wu, Q., Xu, F., Liu, L., Char, S.N., Ding, Y., Je, B.I., Schmelz, E., Yang, B., Jackson, D., 2020. The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. Proc. Natl. Acad. Sci. U. S. A. 117, 1799-1805.
|
Xia, K., Sun, H.-X., Li, J., Li, J., Zhao, Y., Chen, L., Qin, C., Chen, R., Chen, Z., Liu, G., et al., 2022. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57, 1299-1310.
|
Xing, S., Zachgo, S., 2008. ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. Plant J. 53, 790-801.
|
Xu, X., Crow, M., Rice, B.R., Li, F., Harris, B., Liu, L., Demesa-Arevalo, E., Lu, Z., Wang, L., Fox, N., et al., 2021. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev. Cell 56, 557-568.
|
Xu, X., Passalacqua, M., Rice, B., Demesa-Arevalo, E., Kojima, M., Takebayashi, Y., Harris, B., Sakakibara, H., Gallavotti, A., Gillis, J., Jackson, D., 2024. Large-scale single-cell profiling of stem cells uncovers redundant regulators of shoot development and yield trait variation. bioRxiv. doi: 10.1101/2024.03.04.583414.
|
Xu, X., Qi, L.S., 2019. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431, 34-47.
|
Yadav, R.K., Perales, M., Gruel, J., Girke, T., Jonsson, H., Reddy, G.V., 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev. 25, 2025-2030.
|
Yang, F., Wang, Q., Schmitz, G., Muller, D., Theres, K., 2012. The bHLH protein ROX acts in concert with RAX1 and LAS to modulate axillary meristem formation in Arabidopsis. Plant J. 71, 61-70.
|
Yang, R.S., Xu, F., Wang, Y.M., Zhong, W.S., Dong, L., Shi, Y.N., Tang, T.J., Sheng, H.J., Jackson, D., Yang, F., 2021. Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. Nat. Plants 7, 1589-1601.
|
Yang, W., Wang, P., Luo, M., Cai, Y., Xu, C., Xue, G., Jin, X., Cheng, R., Que, J., Pang, F., et al., 2023. DeepCCI: a deep learning framework for identifying cell-cell interactions from single-cell RNA sequencing data. Bioinformatics 39, btad596.
|
Yang, X., Liu, G., Feng, G., Bu, D., Wang, P., Jiang, J., Chen, S., Yang, Q., Miao, H., Zhang, Y., et al., 2024. GeneCompass: deciphering universal gene regulatory mechanisms with a knowledge-informed cross-species foundation model. Cell Res. 34, 830-845.
|
Yao, H., Skirpan, A., Wardell, B., Matthes, M.S., Best, N.B., McCubbin, T., Durbak, A., Smith, T., Malcomber, S., McSteen, P., 2019. The barren stalk2 gene is required for axillary meristem development in maize. Mol. Plant 12, 374-389.
|
Yoshida, A., Ohmori, Y., Kitano, H., Taguchi-Shiobara, F., Hirano, H.Y., 2012. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J. 70, 327-339.
|
Yun, D., Liang, W., Dreni, L., Yin, C., Zhou, Z., Kater, M.M., Zhang, D., 2013. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Mol. Plant 6, 743-756.
|
Zeng, J., Geng, X., Zhao, Z., Zhou, W., 2024. Tipping the balance: the dynamics of stem cell maintenance and stress responses in plant meristems. Curr. Opin. Plant Biol. 78, 102510.
|
Zhang, C., Barthelson, R.A., Lambert, G.M., Galbraith, D.W., 2008. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol. 147, 30-40.
|
Zhang, D., Sun, W., Singh, R., Zheng, Y., Cao, Z., Li, M., Lunde, C., Hake, S., Zhang, Z., 2018. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. Plant Cell 30, 360-374.
|
Zhang, J., Ahmad, M., Gao, H., 2023. Application of single-cell multi-omics approaches in horticulture research. Mol. Hortic. 3, 18.
|
Zhang, L., DeGennaro, D., Lin, G., Chai, J., Shpak, E.D., 2021. ERECTA family signaling constrains CLAVATA3 and WUSCHEL to the center of the shoot apical meristem. Development 148, dev189753.
|
Zhang, R., Yang, M., Schreiber, J., O'Day, D.R., Turner, J.M.A., Shendure, J., Disteche, C.M., Deng, X., Noble, W.S., 2024. Cross-species imputation and comparison of single-cell transcriptomic profiles. bioRxiv. doi: 10.1101/2023.10.19.563173.
|
Zhang, T.Q., Chen, Y., Liu, Y., Lin, W.H., Wang, J.W., 2021. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat. Commun. 12, 2053.
|
Zheng, H.X., Wu, F.H., Li, S.M., Zhang, X.S., Sui, N., 2021. Single-cell profiling lights different cell trajectories in plants. aBIOTECH 2, 64-78.
|
Zhou, Y., Yan, A., Han, H., Li, T., Geng, Y., Liu, X., Meyerowitz, E.M., 2018. HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem layers. Science 361, 502-506.
|
Zhu, C., Preissl, S., Ren, B., 2020. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11-14.
|
Zhu, J., Lolle, S., Tang, A., Guel, B., Kvitko, B., Cole, B., Coaker, G., 2023. Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep. 42, 112676.
|
Zhu, J.K., 2016. Abiotic stress signaling and responses in plants. Cell 167, 313-324.
|
Zhu, Y., Wang, Y., Li, R., Song, X., Wang, Q., Huang, S., Jin, J.B., Liu, C.M., Lin, J., 2010. Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J. 61, 223-233.
|