9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 6
Jun.  2025
Turn off MathJax
Article Contents

Genetic interaction network of quantitative trait genes for heading date in rice

doi: 10.1016/j.jgg.2024.12.019
Funds:

This work was supported by the National Natural Science Foundation of China (32222064 and 32341030), the Natural Science Foundation of Shanghai (22ZR1445800), and Zhejiang Provincial Natural Science Foundation of China (LQ24C130008).

  • Received Date: 2024-09-30
  • Accepted Date: 2024-12-30
  • Rev Recd Date: 2024-12-30
  • Available Online: 2025-07-11
  • Publish Date: 2025-01-06
  • Several quantitative trait genes (QTGs) related to rice heading date, a key factor for crop development and yield, have been identified, along with complex interactions among genes. However, a comprehensive genetic interaction network for these QTGs has not yet been established. In this study, we use 18K-rice lines to identify QTGs and their epistatic interactions affecting rice heading date. We identify 264 pairs of interacting quantitative trait loci (QTL) and construct a comprehensive genetic network of these QTL. On average, the epistatic effects of QTL pairs are estimated to be approximately 12.5% of additive effects of identified QTL. Importantly, epistasis varies among different alleles of several heading date genes. Additionally, 57 pairs of interacting QTGs are also significant in their epistatic effects on 12 other agronomic traits. The identified QTL genetic interactions are further validated using near-isogenic lines, yeast two-hybrid, and split-luciferase complementation assays. Overall, this study provides a genetic network of rice heading date genes, which plays a crucial role in regulating rice heading date and influencing multiple related agronomic traits. This network serves as a foundation for understanding the genetic mechanisms of rice quantitative traits and for advancing rice molecular breeding.
  • loading
  • Brambilla, V., Gomez-Ariza, J., Cerise, M., Fornara, F., 2017. The importance of being on time: regulatory networks controlling photoperiodic flowering in cereals. Front. Plant Sci. 8, 665.
    Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C., et al., 2009. The genetic architecture of maize flowering time. Science 325, 714-718.
    Cui, Y., Lin, Y., Wei, H., Pan, Y., He, H., Qian, H., Yang, L., Cao, X., Zhang, Z., Zeng, X., et al., 2024. Identification of salt tolerance-associated presence-absence variations in the OsMADS56 gene through the integration of DEGs dataset and eQTL analysis. New Phytol. 243, 833-838.
    Cui, Y., Wang, J., Feng, L., Liu, S., Li, J., Qiao, W., Song, Y., Zhang, Z., Cheng, Y., Zhang, L., et al., 2020. A combination of long-day suppressor genes contributes to the northward expansion of rice. Front. Plant Sci. 11, 864.
    Deng, L., Gao, B., Zhao, L., Zhang, Y., Zhang, Q., Guo, M., Yang, Y., Wang, S., Xie, L., Lou, H., et al., 2022. Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice. Genome Biol. 23, 7.
    Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., Yoshimura, A., 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18, 926-936.
    Du, A., Tian, W., Wei, M., Yan, W., He, H., Zhou, D., Huang, X., Li, S., Ouyang, X., 2017. The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Mol. Plant 10, 948-961.
    Fan, J., Hua, H., Luo, Z., Zhang, Q., Chen, M., Gong, J., Wei, X., Huang, Z., Huang, X., Wang, Q., 2022. Whole-Genome Sequencing of 117 Chromosome Segment Substitution Lines for Genetic Analyses of Complex Traits in Rice. Rice 15, 5.
    Farooq, M.A., Gao, S., Hassan, M.A., Huang, Z., Rasheed, A., Hearne, S., Prasanna, B., Li, X., Li, H., 2024. Artificial intelligence in plant breeding. Trends Genet. S0168-9525(24)00167-7.
    Gao, H., Jin, M., Zheng, X.M., Chen, J., Yuan, D., Xin, Y., Wang, M., Huang, D., Zhang, Z., Zhou, K., et al., 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. U. S. A. 111, 16337-16342.
    Gomez-Ariza, J., Galbiati, F., Goretti, D., Brambilla, V., Shrestha, R., Pappolla, A., Courtois, B., Fornara, F., 2015. Loss of floral repressor function adapts rice to higher latitudes in Europe. J. Exp. Bot. 66, 2027-2039.
    Gu, Z., Han, B., 2024. Unlocking the mystery of heterosis opens the era of intelligent rice breeding. Plant Physiol. 196, 735-744.
    Guo, L., Wang, X., Zhao, M., Huang, C., Li, C., Li, D., et al., 2018. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Curr. Biol. 28, 3005-3015.
    Guo, T., Mu, Q., Wang, J., Vanous, A.E., Onogi, A., Iwata, H., Li, X., Yu, J., 2020. Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. Genome Res. 30, 673-683.
    He, W., He, H., Yuan, Q., Zhang, H., Li, X., Wang, T., Yang, Y., Yang, L., Yang, Y., Liu, X., et al., 2024. Widespread inversions shape the genetic and phenotypic diversity in rice. Sci. Bull. (Beijing) 69, 593-596.
    Hori, K., Matsubara, K., Yano, M., 2016. Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theor. Appl. Genet. 129, 2241-2252.
    Huang, L., Tang, J., Zhu, B., Chen, G., Chen, L., Bu, S., Zhu, H., Liu, Z., Li, Z., Meng, L., et al., 2024. QTL epistasis plays a role of homeostasis on heading date in rice. Sci. Rep. 14, 373.
    Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., et al., 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501.
    Huang, X., Yang, S., Gong, J., Zhao, Q., Feng, Q., Zhan, Q., Zhao, Y., Li, W., Cheng, B., Xia, J., et al., 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629-633.
    Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., et al., 2015. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6, 6258.
    Izawa, T., 2007. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J. Exp. Bot. 58, 3091-3097.
    Jiang, Y., Reif, J.C., 2015. Modeling epistasis in genomic selection. Genetics 201, 759-768.
    Jin, M., Liu, X., Jia, W., Liu, H., Li, W., Peng, Y., et al. 2018. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. J. Integr. Plant Biol. 60, 465-480.
    Jing, L., Rui, X., Wang, C., Lan, Q., Zheng, X., Wang, W., Ding, Y., Zhang, L., Wang, Y., Cheng, Y., et al., 2018. A heading date QTL, qHD7.2, from wild rice (Oryza rufipogon) delays flowering and shortens panicle length under long-day conditions. Sci. Rep. 8, 2928.
    Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., Shimamoto, K., 2008. Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774.
    Komiya, R., Yokoi, S., Shimamoto, K., 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
    Kuzmin, E., VanderSluis, B., Wang, W., Tan, G., Deshpande, R., Chen, Y., Usaj, M., Balint, A., Mattiazzi Usaj, M., van Leeuwen, J., et al., 2018. Systematic analysis of complex genetic interactions. Science 360, eaao1729.
    Lee, S.Y., Jeung, J.U., Mo, Y., 2024. Allelic combinations of Hd1, Hd16, and Ghd7 exhibit pleiotropic effects on agronomic traits in rice. G3 (Bethesda) 14, jkad300.
    Li, H., Ribaut, J.M., Li, Z., Wang, J., 2008. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor. Appl. Genet. 116, 243-260.
    Li, X., Zhu, C., Yeh, C.T., Wu, W., Takacs, E.M., Petsch, K.A., Tian, F., Bai, G., Buckler, E.S., Muehlbauer, G.J., et al., 2012. Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res. 22, 2436-2444.
    Liu, H., Liu, H., Zhou, L., Zhang, Z., Zhang, X., Wang, M., Li, H., Lin, Z., 2015. Parallel Domestication of the Heading Date 1 gene in cereals. Mol. Biol. Evol. 32, 2726-2737.
    Liu, J., Yi, Q., Dong, G., Chen, Y., Guo, L., Gao, Z., Zhu, L., Ren, D., Zhang, Q., Li, Q., et al., 2024. Improving rice quality by regulating the heading dates of rice varieties without yield penalties. Plants (Basel) 13, 2221.
    Liang, Y., Liu, Q., Wang, X., Huang, C., Xu, G., Hey, S., et al., 2019. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol. 221, 2335-2347.
    Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 12, e1005767.
    Lu, L., Yan, W., Xue, W., Shao, D., Xing, Y., 2012. Evolution and association analysis of Ghd7 in rice. PLoS One 7, e34021.
    Naranjo, L., Talon, M., Domingo, C., 2014. Diversity of floral regulatory genes of japonica rice cultivated at northern latitudes. BMC Genomics 15, 101.
    Ng, P.C., Henikoff, S., 2001. Predicting deleterious amino acid substitutions. Genome Res. 11, 863-874.
    Qiu, L., Wu, Q., Wang, X., Han, J., Zhuang, G., Wang, H., Shang, Z., Tian, W., Chen, Z., Lin, Z., et al., 2021. Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. Nat. Food 2, 348-362.
    Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al., 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112-1115.
    Shen, G., Hu, W., Wang, X., Zhou, X., Han, Z., Sherif, A., Ayaad, M., Xing, Y., 2022. Assembly of yield heterosis of an elite rice hybrid is promising by manipulating dominant quantitative trait loci. J. Integr. Plant Biol. 64, 688-701.
    Stitzer, M.C., Anderson, S.N., Springer, N.M., Ross-Ibarra, J., 2021. The genomic ecosystem of transposable elements in maize. PLOS Genet. 17, e1009768.
    Su, H., Cao, L., Ren, Z., Sun, W., Zhu, B., Ma, S. et al., 2024. ZmELF6-ZmPRR37 module regulates maize flowering and salt response. Plant Biotechnol. J. 22, 929-945.
    Sun, K., Huang, M., Zong, W., Xiao, D., Lei, C., Luo, Y., Song, Y., Li, S., Hao, Y., Luo, W., et al., 2022. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits. J. Genet. Genomics 49, 437-447.
    Takahashi, Y., Teshima, K.M., Yokoi, S., Innan, H., Shimamoto, K., 2009. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc. Natl. Acad. Sci. U. S. A. 106, 4555-4560.
    Vicentini, G., Biancucci, M., Mineri, L., Chirivi, D., Giaume, F., Miao, Y., Kyozuka, J., Brambilla, V., Betti, C., Fornara, F., 2023. Environmental control of rice flowering time. Plant Commun. 4, 100610.
    Wang, C., Dai, S., Zhang, Z.L., Lao, W., Wang, R., Meng, X., Zhou, X., 2021. Ethylene and salicylic acid synergistically accelerate leaf senescence in Arabidopsis. J. Integr. Plant Biol. 63, 828-833.
    Wang, P., Xiong, Y., Gong, R., Yang, Y., Fan, K., Yu, S., 2019. A key variant in the cis-regulatory element of flowering gene Ghd8 associated with cold tolerance in rice. Sci. Rep. 9, 9603.
    Wang, P., Yang, Y., Li, D., Yu, Z., Zhang, B., Zhou, X., Xiong, L., Zhang, J., Wang, L., Xing, Y., 2024. Powerful QTL mapping and favorable allele mining in an all-in-one population: a case study of heading date. Natl. Sci. Rev. 11, nwae222.
    Wang, X., Zhou, T., Li, G., Yao, W., Hu, W., Wei, X., Che, J., Yang, H., Shao, L., Hua, J., et al., 2022. A Ghd7-centered regulatory network provides a mechanistic approximation to optimal heterosis in an elite rice hybrid. Plant J. 112, 68-83.
    Wei, X., Chen, M., Zhang, Q., Gong, J., Liu, J., Yong, K., Wang, Q., Fan, J., Chen, S., Hua, H., et al., 2024. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 385, eadm8762.
    Wei, X., Qiao, W., Yuan, N., Chen, Y., Wang, R., Cao, L., Zhang, W., Yang, Q., Zeng, H., 2014. Domestication and association analysis of Hd1 in Chinese mini-core collections of rice. Genet. Resour. Crop Evol. 61, 121-142.
    Wei, X., Qiao, W.H., Chen, Y.T., Wang, R.S., Cao, L.R., Zhang, W.X., Yuan, N.N., Li, Z.C., Zeng, H.L., Yang, Q.W., 2012. Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Mol. Ecol. 21, 5073-5087.
    Wei, X., Qiu, J., Yong, K., Fan, J., Zhang, Q., Hua, H., Liu, J., Wang, Q., Olsen, K.M., Han, B., et al., 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat. Genet. 53, 243-253.
    Wei, X., Xu, J., Guo, H., Jiang, L., Chen, S., Yu, C., Zhou, Z., Hu, P., Zhai, H., Wan, J., 2010. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153, 1747-1758.
    Wu, W., Zheng, X.M., Lu, G., Zhong, Z., Gao, H., Chen, L., Wu, C., Wang, H.J., Wang, Q., Zhou, K., et al., 2013. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc. Natl. Acad. Sci. U. S. A. 110, 2775-2780.
    Xie, X., Zhang, Q., Liu, Y.G., 2024. Rice GWAS-to-Gene uncovers the polygenic basis of traits. Sci. China Life Sci. https://doi.org/10.1007/s11427-024-2716-5.
    Xu, Y., Zhang, X., Li, H., Zheng, H., Zhang, J., Olsen, M.S., Varshney, R.K., Prasanna, B.M., Qian, Q., 2022. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol. Plant 15, 1664-1695.
    Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., et al., 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767.
    Yamaguchi, N., Winter, C.M., Wu M.F., Kanno, Y., Yamaguchi, A., Seo, M., Wagner, D., 2014. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344, 638-641.
    Yan, W., Liu, H., Zhou, X., Li, Q., Zhang, J., Lu, L., Liu, T., Liu, H., Zhang, C., Zhang, Z., et al., 2013. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res. 23, 969-971.
    Yan, W.H., Wang, P., Chen, H.X., Zhou, H.J., Li, Q.P., Wang, C.R., Ding, Z.H., Zhang, Y.S., Yu, S.B., Xing, Y.Z., et al., 2011. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 4, 319-330.
    Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M., 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82.
    Yang, Z., Jin, L., Zhu, H., Wang, S., Zhang, G., Liu, G., 2018. Analysis of epistasis among QTLs on heading date based on single segment substitution lines in rice. Sci. Rep. 8, 3059.
    Zhan, P., Ma, S., Xiao, Z., Li, F., Wei, X., Lin, S., Wang, X., Ji, Z., Fu, Y., Pan, J., et al., 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. J. Genet. Genomics 49, 405-413.
    Zhang, B., Liu, H., Qi, F., Zhang, Z., Li, Q., Han, Z., Xing, Y., 2019. Genetic Interactions Among Ghd7, Ghd8, OsPRR37 and Hd1 Contribute to Large Variation in Heading Date in Rice. Rice 12, 48.
    Zhao, J., Chen, H., Ren, D., Tang, H., Qiu, R., Feng, J., Long, Y., Niu, B., Chen, D., Zhong, T., et al., 2015. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa). New Phytol. 208, 936-948.
    Zhao, Q., Huang, X., Lin, Z., Han, B., 2010. SEG-Map: A novel software for genotype calling and genetic map construction from next-generation sequencing. Rice 3, 98-102.
    Zhao, H.Y., Shan, J.X., Ye, W.W., Dong, N.Q., Kan, Y., Yang, Y.B., Yu, H.X., Lu, Z.Q., Guo, S.Q., Lei, J.J., et al., 2024. A QTL GN1.1, encoding FT-L1, regulates grain number and yield by modulating polar auxin transport in rice. J Integr Plant Biol. https://doi.org/10.1111/jipb.13749.
    Zhou, X., Nong, C., Wu, B., Zhou, T., Zhang, B., Liu, X., Gao, G., Mi, J., Zhang, Q., Liu, H., et al., 2021. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J. Exp. Bot. 72, 6963-6976.
    Zong, W., Ren, D., Huang, M., Sun, K., Feng, J., Zhao, J., Xiao, D., Xie, W., Liu, S., Zhang, H., et al., 2021. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol. 229, 1635-1649.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return