Azodi, C.B., Jeremy, P., Robert, V.B., Gustavo, D.L.C.,Shin-Han, S., 2019. Transcriptome-based prediction of complex traits in maize. Plant Cell 32, 139-151.
|
Barreto, C.A.V., Dias, K.O.D.G., Sousa, I.C.D., Azevedo, C.F., Nascimento, A.C.C., Guimares, L.J.M., Guimares, C.T., Pastina, M.M.,Nascimento, M., 2024. Genomic prediction in multi-environment trials in maize using statistical and machine learning methods. Sci. Rep. 14, 1062.
|
Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L.,Abraham, A., 2020. Differential evolution: A review of more than two decades of research. Eng. Appl. Artif. Intel. 90, 103479.
|
Chen, T.,Guestrin, C. 2016. Xgboost: A scalable tree boosting system. Paper presented at: Proc. 22nd ACM SIGKDD Inter. Conf. KDDM Association for Computing Machinery, San Francisco California USA.
|
Crossa, J., Fritsche-Neto, R., Montesinos-Lopez, O.A., Costa-Neto, G., Dreisigacker, S., Montesinos-Lopez, A.,Bentley, A.R., 2021. The modern plant breeding triangle: Optimizing the use of genomics, phenomics, and enviromics data. Front. Plant Sci. 12, 651480.
|
de los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A.s., Manfredi, E., Weigel, K.,Cotes, J.M., 2009. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182, 375-385.
|
Dimitrakopoulos, L., Prassas, I., Diamandis, E.P.,Charames, G.S., 2017. Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction. Crit. Rev. Clin. Lab. Sci. 54, 414-432.
|
Flint-Garcia, S.A., Thuillet, A.-C., Yu, J., Pressoir, G., Romero, S.M., Mitchell, S.E., Doebley, J., Kresovich, S., Goodman, M.M.,Buckler, E.S., 2005. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J. 44, 1054-1064.
|
Friedman, J.H., Hastie, T.,Tibshirani, R., 2010. Regularized paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1-22.
|
Fu, J., Cheng, Y., Linghu, J., Yang, X., Kang, L., Zhang, Z., Zhang, J., He, C., Du, X., Peng, Z., et al., 2013. Rna sequencing reveals the complex regulatory network in the maize kernel. Nat. Commun. 4, 2832.
|
Ganal, M.W., Durstewitz, G., Polley, A., Berard, A., Buckler, E.S., Charcosset, A., Clarke, J.D., Graner, E.-M., Hansen, M., Joets, J., et al., 2011. A large maize (zea mays l.) snp genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the b73 reference genome. PLoS One 6, e28334.
|
Gong, L., Chen, W., Gao, Y., Liu, X., Zhang, H., Xu, C., Yu, S., Zhang, Q.,Luo, J., 2013. Genetic analysis of the metabolome exemplified using a rice population. Proc. Natl. Acad. Sci. U.S.A. 110, 20320-20325.
|
Henderson, C.R., 1975. Best linear unbiased estimation and prediction under a selection model. Biom. 31, 423-447.
|
Holliday, J.A., Wang, T.,Aitken, S., 2012. Predicting adaptive phenotypes from multilocus genotypes in sitka spruce (picea sitchensis) using random forest. G3:Genes Genom. Genet. 2, 1085-1093.
|
Hu, X., Xie, W., Wu, C.,Xu, S., 2019. A directed learning strategy integrating multiple omic data improves genomic prediction. Plant Biotechnol. J. 17, 2011-2020.
|
Hua, J., Xing, Y., Wu, W., Xu, C., Sun, X., Yu, S.,Zhang, Q., 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U.S.A. 100, 2574-2579.
|
Kremling, K.A.G., Chen, S.Y., Su, M.H., Lepak, N.K., Romay, M.C., Swarts, K.L., Lu, F., Lorant, A., Bradbury, P.J.,Buckler, E.S., 2018. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555, 520-523.
|
Li, B., Zhang, N., Wang, Y.-G., George, A.W., Reverter, A.,Li, Y., 2018. Genomic prediction of breeding values using a subset of snps identified by three machine learning methods. Front. Genet. 9, 237.
|
Liu, H., Luo, X., Niu, L., Xiao, Y., Chen, L., Liu, J., Wang, X., Jin, M., Li, W.,Zhang, Q., 2017. Distant eqtls and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Mol. Plant 10, 414-426.
|
Ma, W., Qiu, Z., Song, J., Li, J., Cheng, Q., Zhai, J.,Ma, C., 2018. A deep convolutional neural network approach for predicting phenotypes from genotypes. Planta 248, 1307-1318.
|
Maenhout, S., Baets, B.D., Haesaert, G.,Bockstaele, E.V., 2007. Support vector machine regression for the prediction of maize hybrid performance. Theor. Appl. Genet. 115, 1003-1013.
|
Meuwissen, T.H., Hayes, B.J.,Goddard, M.E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819-1829.
|
Montesinos-Lopez, O.A., Montesinos-Lopez, A., Crossa, J., Gianola, D., Hernandez-Suarez, C.M.,Martin-Vallejo, J., 2018. Multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits. G3:Genes Genom. Genet. 8, 3829-3840.
|
Serra, A., Fratello, M., Fortino, V., Raiconi, G., Tagliaferri, R.,Greco, D., 2015. Mvda: A multi-view genomic data integration methodology. BMC Bioinf. 16, 261.
|
Storn, R.,Price, K., 1997. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341-359.
|
Usai, M.G., Goddard, M.E.,Hayes, B.J., 2009. Lasso with cross-validation for genomic selection. Genet. Res. 91, 427-436.
|
Wang, J., Yu, H., Weng, X., Xie, W., Xu, C.-g., Li, X., Xiao, J.,Zhang, Q., 2014. An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population. J. Exp. Bot. 65, 1069 - 1079.
|
Wang, K., Abid, M.A., Rasheed, A., Crossa, J., Hearne, S.,Li, H., 2023. Dnngp, a deep neural network-based method for genomic prediction using multi-omics data in plants. Mol. Plant 16, 279-293.
|
Wang, T., Shao, W., Huang, Z., Tang, H.,Huang, K., 2021. Mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat. Commun. 12, 3445.
|
Wen, W., Li, D., Li, X., Gao, Y., Li, W., Li, H., Liu, J., Liu, H., Chen, W.,Luo, J., 2014. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 5, 3438.
|
Xu, S., Xu, Y., Gong, L.,Zhang, Q., 2016. Metabolomic prediction of yield in hybrid rice. Plant J. 88, 219-227.
|
Xu, Y., Zhang, X., Li, H., Zheng, H., Zhang, J., Olsen, M.S., Varshnev, R.K., M.Prasanna, B.,Qian, Q., 2022. Smart breeding driven by big data,artificial intelligence,and integrated genomic-enviromic prediction. Mol. Plant 15, 1664-1695.
|
Xu, Y., Zhang, Y., Cui, Y., Zhou, K., Yu, G., Yang, W., Wang, X., Li, F., Guan, X., Zhang, X., et al., 2024. Ga-gblup: Leveraging the genetic algorithm to improve the predictability of genomic selection. Briefings Bioinf. 25, bbae385.
|
Yan, J., Xu, Y., Cheng, Q., Jiang, S., Wang, Q., Xiao, Y., Ma, C., Yan, J.,Wang, X., 2021. Lightgbm: Accelerated genomically designed crop breeding through ensemble learning. Genome Biol. 22, 271.
|
Yang, N., Lu, Y., Yang, X., Huang, J., Zhou, Y., Ali, F., Wen, W., Liu, J., Li, J.,Yan, J., 2014. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLos Genet. 10, e1004573.
|
Yang, X., Gao, S., Xu, S., Zhang, Z., Prasanna, B.M., Li, L., Li, J.,Yan, J., 2011. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 28, 511-526.
|
Yi, N.,Xu, S., 2008. Bayesian lasso for quantitative trait loci mapping. Genetics 179, 1045-1055.
|
Yu, H., Xie, W., Wang, J., Xing, Y., Xu, C., Li, X., Xiao, J.,Zhang, Q., 2011. Gains in qtl detection using an ultra-high density snp map based on population sequencing relative to traditional rflp/ssr markers. PLoS One 6, e17595.
|
Zhou, Y., Zhang, Z., Bao, Z., Li, H., Lyu, Y., Zan, Y., Wu, Y., Cheng, L., Fang, Y., Wu, K., et al., 2022. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527-534.
|