Brooks, M.D., Cirrone, J., Pasquino, A.V., Alvarez, J.M., Swift, J., Mittal, S., Juang, C.L., Varala, K., Gutierrez, R.A., Krouk, G., et al., 2019. Network Walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat. Commun. 10, 1569.
|
Cai, H., Lu, Y., Xie, W., Zhu, T., Lian, X., 2012. Transcriptome response to nitrogen starvation in rice. J. Biosci. 37, 731-747.
|
Canales, J., Moyano, T.C., Villarroel, E., Gutierrez, R.A., 2014. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. Front. Plant Sci. 5, 22.
|
Cao, H., Liu, Z., Guo, J., Jia, Z., Shi, Y., Kang, K., Peng, W., Wang, Z., Chen, L., Neuhaeuser, B., et al., 2024. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. Plant Biotechnol. J 22, 316-329.
|
Castaings, L., Camargo, A., Pocholle, D., Gaudon, V., Texier, Y., Boutet-Mercey, S., Taconnat, L., Renou, J.P., Daniel-Vedele, F., Fernandez, E., et al., 2009. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant J. 57, 426-435.
|
Chen C., Wu Y., Li J., Wang X., Zeng Z., Xu J., Liu Y., Feng J., Chen H., He Y., Xia R., 2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant 16, 1733-1742.
|
Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92.
|
Deane-Drummond, C.E., Glass, A.D., 1982. Nitrate uptake into barley (Hordeum vulgare) plants: a new approach using ClO(3) as an analog for NO(3). Plant Physiol. 70, 50-54.
|
Du, Q., Yang, J., Muhammad, S., Shah, S., Li, W., 2021. Comparative transcriptome analysis of the different nitrogen responses in low nitrogen-sensitive and -tolerant maize genotypes. J. Integr. Agric. 20, 13.
|
Gan, Y., Bernreiter, A., Filleur, S., Abram, B., Forde, B.G., 2012. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development. Plant Cell Physiol. 53, 1003-1016.
|
Gaudinier, A., Rodriguez-Medina, J., Zhang, L., Olson, A., Liseron-Monfils, C., Bagman, A.M., Foret, J., Abbitt, S., Tang, M., Li, B., et al., 2018. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563, 259-264.
|
Ge, M., Wang, Y., Liu, Y., Jiang, L., He, B., Ning, L., Du, H., Lv, Y., Zhou, L., Lin, F., et al., 2020. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. Plant J. 102, 353-368.
|
Geilfus, C.M., 2018. Chloride: from Nutrient to Toxicant. Plant Cell Physiol. 59, 877-886.
|
Haque, S., Ahmad, J.S., Clark, N.M., Williams, C.M., Sozzani, R., 2019. Computational prediction of gene regulatory networks in plant growth and development. Curr. Opin. Plant Biol. 47, 96-105.
|
Hu, B., Wang, W., Ou, S., Tang, J., Li, H., Che, R., Zhang, Z., Chai, X., Wang, H., Wang, Y., et al., 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47, 834-838.
|
Hufford, M.B., Seetharam, A.S., Woodhouse, M.R., Chougule, K.M., Ou, S., Liu, J., Ricci, W.A., Guo, T., Olson, A., Qiu, Y., et al., 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655-662.
|
Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M.C., Wang, B., Campbell, M.S., Stein, J.C., Wei, X., Chin, C.S., et al., 2017. Improved maize reference genome with single-molecule technologies. Nature 546, 524-527.
|
Karunarathne, S.D., Han, Y., Zhang, X, Dang, V., Angessa, T.T., Li, C., 2021. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. Mol. breed. 41, 47.
|
Kohl, M., Wiese, S., and Warscheid, B., 2011. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 696, 291-303.
|
Krouk, G., Mirowski, P., LeCun, Y., Shasha, D.E., Coruzzi, G.M., 2010. Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biol. 11, R123.
|
Kumar, L., M, E.F., 2007. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5-7.
|
Landt, S.G., Marinov, G.K., Kundaje, A., Kheradpour, P., Pauli, F., Batzoglou, S., Bernstein, B.E., Bickel, P., Brown, J.B., Cayting, P., et al., 2012. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813-1831.
|
Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559.
|
Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.
|
Li, B., Ruotti, V., Stewart, R.M., Thomson, J.A., Dewey, C.N., 2010. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493-500.
|
Li, H., Durbin, R., 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589-595.
|
Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., et al., 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600.
|
Li, S., Ji, M., Liu, F., Zhu, M., Yang, Y., Zhang, W., Liu, S., Wang, Y., Lv, W., Qi, S., 2024. NRG2 family members of Arabidopsis and maize regulate nitrate signalling and promote nitrogen use efficiency. Physiol. Plant. 176, e14251.
|
Liang, L., Zhou, L., Tang, Y., Li, N., Song, T., Shao, W., Zhang, Z., Cai, P., Feng, F., Ma, Y., et al., 2019. A sequence-indexed mutator insertional library for maize functional genomics study. Plant Physiol.181, 1404-1414.
|
Liu, Y., Jia, Z., Li, X., Wang, Z., Chen, F., Mi, G., Forde, B., Takahashi, H., Yuan, L., 2020. Involvement of a truncated MADS-box transcription factor ZmTMM1 in root nitrate foraging. J. Exp. Bot. 71, 4547-4561.
|
Liu, X., Hu, B., Chu, C., 2022. Nitrogen assimilation in plants: current status and future prospects. J. Genet. Genomics 49, 394-404.
|
Makino, A., 2011. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 155, 125-129.
|
Marchive, C., Roudier, F., Castaings, L., Brehaut, V., Blondet, E., Colot, V., Meyer, C., and Krapp, A., 2013. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 4, 1713.
|
McMullen, M.D., Kresovich, S., Villeda, H.S., Bradbury, P., Li, H., Sun, Q., Flint-Garcia, S., Thornsberry, J., Acharya, C., Bottoms, C., et al., 2009. Genetic properties of the maize nested association mapping population. Science 325, 737-740.
|
Ning, L., Wang, J., Shi, P., Wu, C., Dong, Z., Zhao, H. 2019. Mapping genome-wide binding sites of endosperm specific expression transcription factor O2 using DAP-Seq. Chinese Science Bulletin 64, 2537-2548.
|
Orsel, M., Eulenburg, K., Krapp, A., Daniel-Vedele, F., 2004. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta 219, 714-721.
|
Raun, W.R., Johnson, G.V., 1999. Improving nitrogen use efficiency for cereal production. Agronomy Journal 91, 357-363.
|
Reed, H.E., Sammons, D.J., Smail, V.W., Taylor, G.J., 1992. Sensitivity of soft red winter wheat cultivars to chlorate-induced toxicity. J. Plant Nutr. 15, 2621-2637.
|
Siddiqi, M.Y., King, B.J., Glass, A.D. 1992 Effects of nitrite, chlorate, and chlorite on nitrate uptake and nitrate reductase activity. Plant Physiol. 100, 644-650.
|
Swift, J., Alvarez, J.M., Araus, V., Gutierrez, R.A., Coruzzi, G.M., 2020. Nutrient dose-responsive transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates. Proc. Natl. Acad. Sci. U. S. A. 117, 12531-12540.
|
Tang, W., Ye, J., Yao, X., Zhao, P., Xuan, W., Tian, Y., Zhang, Y., Xu, S., An, H., Chen, G., et al., 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat. Commun. 10, 5279.
|
Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., Crawford, N.M., 1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705-713.
|
Ueda, Y., Yanagisawa, S., 2019. Perception, transduction, and integration of nitrogen and phosphorus nutritional signals in the transcriptional regulatory network in plants. J. Exp. Bot. 70, 3709-3717.
|
Ueda, Y., Ohtsuki, N., Kadota, K., Tezuka, A., Nagano, A.J., Kadowaki, T., Kim, Y., Miyao, M., Yanagisawa, S., 2020. Gene regulatory network and its constituent transcription factors that control nitrogen-deficiency responses in rice. New Phytol. 227, 1434-1452.
|
Varala, K., Marshall-Colon, A., Cirrone, J., Brooks, M.D., Pasquino, A.V., Leran, S., Mittal, S., Rock, T.M., Edwards, M.B., Kim, G.J., et al., 2018. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl. Acad. Sci. U. S. A. 115, 6494-6499.
|
Wang, B., Tseng, E., Baybayan, P., Eng, K., Regulski, M., Jiao, Y., Wang, L., Olson, A., Chougule, K., Buren, P.V., et al., 2020a. Variant phasing and haplotypic expression from long-read sequencing in maize. Commun. Biol. 3, 78.
|
Wang, R., Xing, X., Wang, Y., Tran, A., Crawford, N.M., 2009. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol. 151, 472-478.
|
Wang, X., Wang, H., Chen, Y., Sun, M., Wang, Y., Chen, Y., 2020b. The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize. Plant Cell 32, 3519-3534.
|
Wang, Y., Cheng, Y., Chen, K., Tsay, Y.F., 2018a. Nitrate transport, signaling, and use efficiency. Annu. Rev. Plant Biol. 69, 85-122.
|
Wang, Z., Zhang, L., Sun, C., Gu, R., Mi, G., Yuan, L., 2018b. Phylogenetic, expression and functional characterizations of the maize NLP transcription factor family reveal a role in nitrate assimilation and signaling. Physiol. Plant. 163, 269-281.
|
Woods, R.A., Gietz, R.D., 2001. High-efficiency transformation of plasmid DNA into yeast. Methods Mol. Biol. 177, 85-97.
|
Wu, J., Lawit, S.J., Weers, B., Sun, J., Mongar, N., Van Hemert, J., Melo, R., Meng, X., Rupe, M., Clapp, J., et al., 2019. Overexpression of zmm28 increases maize grain yield in the field. Proc. Natl. Acad. Sci. U. S. A. 116, 23850-23858.
|
Xu, G., Fan, X., Miller, A.J., 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63, 153-182.
|
Yan, D., Easwaran, V., Chau, V., Okamoto, M., Ierullo, M., Kimura, M., Endo, A., Yano, R., Pasha, A., Gong, Y., et al., 2016. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat. Commun. 7, 13179.
|
Yang, J.E., Kim, J.J., Skogley, E.O., Schaff, B.E., 1998. A simple spectrophotometric determination of nitrate in water, resin, and soil extracts. Soil Science Society of America Journal 62, 1108-1115.
|
Zeng, F., Shi, M., Xiao, H., Chi, X., 2021. WGCNA-based identification of hub genes and key pathways involved in nonalcoholic fatty liver disease. Biomed Res Int. 2021, 5633211.
|
Zhang, H., Forde, B.G., 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407-409.
|
Zhang, Z., Li, Z., Wang, W., Jiang, Z., Guo, L., Wang, X., Qian, Y., Huang, X., Liu, Y., Liu, X., et al., 2021. Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus. Mol. Plant 14, 517-529.
|
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., Liu, X.S., 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.
|