8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 12
Dec.  2024
Turn off MathJax
Article Contents

A single-nucleotide polymorphism in PvPW1 encoding β-1,3-glucanase 9 is associated with pod width in Phaseolus vulgaris L.

doi: 10.1016/j.jgg.2024.09.020
Funds:

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070000), the Natural Science Foundation of Heilongjiang Province (TD 2023C005), and the National Natural Science Foundation of China (32372029 and 32001506).

  • Received Date: 2024-08-08
  • Accepted Date: 2024-09-26
  • Rev Recd Date: 2024-09-25
  • Available Online: 2025-06-05
  • Publish Date: 2024-10-09
  • Pod width influences pod size, shape, yield, and consumer preference in snap beans (Phaseolus vulgaris L.). In this study, we map PvPW1, a quantitative trait locus associated with pod width in snap beans, through genotyping and phenotyping of recombinant plants. We identify Phvul.006G072800, encoding the β-1,3-glucanase 9 protein, as the causal gene for PvPW1. The PvPW1G3555 allele is found to positively regulate pod width, as revealed by an association analysis between pod width phenotype and the PvPW1G3555C genotype across 17 bi-parental F2 populations. In total, 97.7% of the 133 wide pod accessions carry PvPW1G3555, while 82.1% of the 78 narrow pod accessions carry PvPW1C3555, indicating strong selection pressure on PvPW1 during common bean breeding. Re-sequencing data from 59 common bean cultivars identify an 8-bp deletion in the intron linked to PvPW1C3555, leading to the development of the InDel marker of PvM436. Genotyping 317 common bean accessions with PvM436 demonstrated that accessions with PvM436247 and PvM436227 alleles have wider pods compared to those with PvM436219 allele, establishing PvM436 as a reliable marker for molecular breeding in snap beans. These findings highlight PvPW1 as a critical gene regulating pod width and underscore the utility of PvM436 in marker-assisted selection for snap bean breeding.

  • loading
  • Amian, A.A., J. Papenbrock, J., Jacobsen, H.J., Hassan, F., 2011. Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops 2, 104-109.
    Benitez-Alfonso, Y., Faulkner, C., Pendle, A., Miyashima, S., Helariutta Y., Maule, A., 2013. Symplastic intercellular connectivity regulates lateral root patterning. Dev. Cell 26, 136-147.
    Bhatnagar-Mathur, P., Vadez V., Sharma, K.K., 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27, 411-424.
    Bucciaglia, P. A., Zimmermann E., Smith, A.G. 2003. Functional analysis of a beta-1,3-glucanase gene (Tag1) with anther-specific RNA and protein accumulation using antisense RNA inhibition. J. Plant Physiol. 160, 1367-1373.
    Cascarina, S.M., Ross, E.D., 2018. Proteome-scale relationships between local amino acid composition and protein fates and functions. PLoS Comput. Biol. 14, e1006256.
    Choudhury, S.R., Roy, S., Sengupta, D.N., 2009. Characterization of cultivar differences in beta-1,3 glucanase gene expression, glucanase activity and fruit pulp softening rates during fruit ripening in three naturally occurring banana cultivars. Plant Cell Rep. 28, 1641-1653.
    Chung, W.J., Baggett, J.R., Rowe, K.E., 1991. Inheritance of pod cross-section in beans (Phaseolus vulgaris L.). Euphytica 53, 159-164.
    Coletta, A., Pinney, J.W., Solis, D.Y.W., Marsh, J., Pettifer, S.R., Attwood, T.K., 2010. Low-complexity regions within protein sequences have position-dependent roles. BMC Syst. Biol. 4, 43.
    DePristo, M.A., Zilversmit, M.M., Hartl D.L., 2006. On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins. Gene 378, 19-30.
    Fang, S., Shang X., He Q., Li W., Song X., Zhang B., Guo W., 2023. A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition. Plant Physiol. 30, 106-123.
    Gonzalez, A.M., Yuste-Lisbona, F.J., Saburido, S., Bretones, S., De Ron, A.M., Lozano R., Santalla, M., 2016. Major contribution of flowering time and vegetative growth to plant production in common bean as deduced from a comparative genetic mapping. Front. Plant Sci. 26, 1940.
    Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam N., Rokhsar, D.S., 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40 (D), D1178-D1186.
    Haerty, W., Golding, G.B., 2010. Low-complexity sequences and single amino acid repeats: not just “junk” peptide sequences. Genome 53, 753-762.
    Hagerty, C.H., Cuesta-Marcos, A., Cregan, P., Song Q., Myers, J.R., 2016. Mapping snap bean pod and color traits, in a dry bean × snap bean recombinant inbred population. J. Am. Soc. Hortic. Sci. 141, 131-138.
    Huntley, M.A. Clark, A.G. 2007. Evolutionary analysis of amino acid repeats across the genomes of 12 Drosophila species. Mol. Biol. Evol. 24, 2598-2609.
    Leakey, C.L.A., 1988. Genotypic and Phenotypic Markers in Common Bean. Springer Netherlands.
    Lee, B., Jaberi-Lashkari, N., Calo, E., 2022. A unified view of low complexity regions (LCRs) across species. Elife 11, e77058.
    Letunic, I., Khedkar S., Bork, P., 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49(D1), D458-d460.
    Levy, A., Erlanger, M., Rosenthal M., Epel, B.L., 2007. A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J. 49, 669-682.
    Li, M., Wu, X., Wang, B., Wu, X., Wang, Y., Wang, J., Dong, J., Wu, J., Lu, Z., Sun, Y., et al., 2023. Genome-wide association analysis reveals the optimal genomic regions for pod size in bean. Front. Plant Sci. 14, 1138988.
    Liu, B., Xue, X., Cui, S., Zhang, X., Han, Q., Zhu, L., Liang, X., Wang, X., Huang, L., Chen X., et al., 2010. Cloning and characterization of a wheat beta-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol. Biol. Rep. 37, 1045-1052.
    Mamidi, S., Rossi, M., Moghaddam, S.M., Annam, D., Lee, R., Papa R., McClean, P.E., 2013. Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L. Heredity 110, 267-276.
    Meng, L., Li, H., Zhang, L., Wang, J., 2015. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal 3, 269-283.
    Mier, P., Paladin, L., Tamana, S., Petrosian, S., Hajdu-Soltesz, B., Urbanek, A., Gruca, A., Plewczynski, D., Grynberg, M., Bernado, P., et al., 2020. Disentangling the complexity of low complexity proteins. Briefings Bioinf. 21, 458-472.
    Murube, E., Campa, A., Song, Q., Mcclean P., Ferreira, J.J., 2020. Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Mol. Breed. 8, 40.
    Myers, J.R. Baggett, J.R., 1999. Improvement of Snap Bean, Common Bean Improvement in the Twenty-First Century. Springer Netherlands Mettam. pp. 289-329.
    Pei, Y., Xue, Q., Zhang, Z., Shu, P., Deng, H., Bouzayen, M., Hong Y., Liu, M., 2023. β-1,3-GLUCANASE10 regulates tomato development and disease resistance by modulating callose deposition. Plant Physiol. 192, 2785-2802.
    Robinson, J.T., Thorvaldsdottir, H., Wenger, A.M., Zehir, A., Mesirov, J.P., 2017. Variant review with the integrative genomics viewer. Cancer Res. 77, e31-e34.
    Salekdeh, G.H., Reynolds, M., Bennett J., Boyer, J., 2009. Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci. 14, 488-496.
    Schmutz, J., McClean, P.E., Mamidi, S., Wu, G.A., Cannon, S.B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., et al., 2014. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707-713.
    Shi, Y., Zhang Y., Shih, D.S., 2006. Cloning and expression analysis of two beta-1,3-glucanase genes from strawberry. J. Plant Physiol. 163, 956-967.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.
    Tsuchiya, T., Toriyama, K., Yoshikawa, M., Ejiri S., Hinata, K., 1995. Tapetum-specific expression of the gene for an endo-beta-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol. 36, 487-494.
    Tuberosa, R., Salvi, S., 2006. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 11, 405-412.
    Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka N., Ishida, I., 1997. The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. U. S. A 94, 1029-1034.
    Wan, L., Zha, W., Cheng, X., Liu, C., Lv, L., Liu, C., Wang, Z., Du, B., Chen, R., Zhu L.,et al., 2011. A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development. Planta 233, 309-323.
    Wang, C., Lyu, Y., Zhang, Q., Guo, H., Chen D., Chen, X., 2023. Disruption of BG14 results in enhanced callose deposition in developing seeds and decreases seed longevity and seed dormancy in Arabidopsis. Plant J. 113, 1080-1094.
    Wang, H., Zhou, X., Liu, C., Li W., Guo, W., 2022. Suppression of GhGLU19 encoding β-1,3-glucanase promotes seed germination in cotton. BMC Plant Biol. 22, 357.
    Wu, J., Wang, L., Fu, J., Chen, J., Wei, S., Zhang, S., Zhang, J., Tang, Y., Chen, M., Zhu, J., et al., 2020. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat. Genet. 52, 118-125.
    Xu, K., Zhu, J., Zhai, H., Wu, H., Gao, Y., Li, Y., Zhu X., Xia, Z., 2021. A critical role of PvFtsH2 in the degradation of photodamaged D1 protein in common bean. Hortic. Res. 8, 126.-126.
    Yuste-Lisbona, F.J., Gonzalez, A.M., Capel, C., Garcia-Alcazar, M., Capel, J., Ron, A.M.D., Santalla M., Lozano, R., 2014. Genetic variation underlying pod size and color traits of common bean depends on quantitative trait loci with epistatic effects. Mol. Breed. 33, 4.
    Zavaliev, R., Ueki, S., Epel B.L., Citovsky, V., 2011. Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma 248, 117-130.
    Zhong, Q., Jia, Q., Yin, W., Wang, Y., Rao Y., Mao, Y., 2023. Advances in cloning functional genes for rice yield traits and molecular design breeding in China. Front. Plant Sci. 14, 1206165.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return