9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 3
Mar.  2025
Turn off MathJax
Article Contents

Phosphorus acquisition, translocation, and redistribution in maize

doi: 10.1016/j.jgg.2024.09.018
Funds:

This work is supported by grants from the National Key Research and Development Program of China (2021YFF1000500) and the National Natural Science Foundation of China (32370272, 31970273, and 31921001).

  • Received Date: 2024-07-29
  • Accepted Date: 2024-09-27
  • Rev Recd Date: 2024-09-27
  • Available Online: 2025-07-11
  • Publish Date: 2024-10-09
  • Phosphorus (P) is an essential nutrient for crop growth, making it important for maintaining food security as the global population continues to increase. Plants acquire P primarily via the uptake of inorganic phosphate (Pi) in soil through their roots. Pi, which is usually sequestered in soils, is not easily absorbed by plants and represses plant growth. Plants have developed a series of mechanisms to cope with P deficiency. Moreover, P fertilizer applications are critical for maximizing crop yield. Maize is a major cereal crop cultivated worldwide. Increasing its P-use efficiency is important for optimizing maize production. Over the past two decades, considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply. Here, we present an overview of the morphological, physiological, and molecular mechanisms involved in P acquisition, translocation, and redistribution in maize and combine the advances in Arabidopsis and rice, to better elucidate the progress of P nutrition. Additionally, we summarize the correlation between P and abiotic stress responses. Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
  • loading
  • Arpat, A.B., Magliano, P., Wege, S., Rouached, H., Stefanovic, A., Poirier, Y., 2012. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J. 71, 479-491.
    Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L., Chiou, T.J., 2006. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000-1011.
    Azevedo, G.C., Cheavegatti-Gianotto, A., Negri, B.F., et al., 2015. Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P. BMC Plant Biol. 15, 172.
    Bai, Y., Yang, Q., Gan, Y., Li, M., Zhao, Z., Dong, E., Li, C., He, D., Mei, X., Cai, Y., 2024. The ZmNF-YC1-ZmAPRG pathway modulates low phosphorus tolerance in maize. J. Exp. Bot. 75, 2867-2881.
    Baker, A., Ceasar, S.A., Palmer, A.J., Paterson, J.B., Qi, W., Muench, S.P., Baldwin, S.A., 2015. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. J. Exp. Bot. 66, 3523-3540.
    Balzergue, C., Dartevelle, T., Godon, C., Laugier, E., Meisrimler, C., Teulon, J.M., Creff, A., Bissler, M., Brouchoud, C., Hagege, A., et al., 2017. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat. Commun. 8, 15300.
    Bari, R., Datt Pant, B., Stitt, M., Scheible, W.R., 2006. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988-999.
    Battini, F., Groenlund, M., Agnolucci, M., Giovannetti, M., Jakobsen, I., 2017. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci. Rep. 7, 4686.
    Bayle, V., Arrighi, J.F., Creff, A., Nespoulous, C., Vialaret, J., Rossignol, M., et al., 2011. Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23, 1523-1535.
    Bieleski, R.L., 1973. Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Biol. 24, 225-252.
    Bingham, F.T., Garber, M.J., 1960. Solubility and availability of micronutrients in relation to phosphorus fertilization. Soil Sci. Soc. Am. J. 24, 209-213.
    Bustos, R., Castrillo, G., Linhares, F., Puga, M.I., Rubio, V., Perez-Perez, J., Solano, R., Leyva, A., Paz-Ares, J., 2010. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6, e1001102.
    Calderon-Vazquez, C., Ibarra-Laclette, E., Caballero-Perez, J., Herrera-Estrella, L., 2008. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. J. Exp. Bot. 59, 2479-2497.
    Canarini, A., Kaiser, C., Merchant, A., Richter, A., Wanek, W., 2019. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157.
    Cao, H., Liu, Z., Guo, J., Jia, Z., Shi, Y., Kang, K., Peng, W., Wang, Z., Chen, L., Neuhaeuser, B., et al., 2024. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. Plant Biotechnol. J. 22, 316-329.
    Chang, M.X., Gu, M., Xia, Y.W., Dai, X.L., Dai, C.R., Zhang, J., Wang, S.C., Qu, H.Y., Yamaji, N., Feng, Ma. J. et al., 2019. OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. Plant Physiol. 179, 656-670.
    Che, J., Yamaji, N., Miyaji, T., Mitani-Ueno, N., Kato, Y., Shen, R., Ma, J., 2020. Node-localized transporters of phosphorus essential for seed development in rice. Plant Cell Physiol. 61, 1387-1398.
    Chen, J., Wang, Y., Wang, F., Yang, J., Gao, M., Li, C., Liu, Y., Liu, Y., Yamaji, N., Ma, J.F., et al., 2015. The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels. Plant Cell 27, 711-723.
    Chen, J., Xu, W., Burke, J.J., Xin, Z., 2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop Sci. 50, 2506-2515.
    Chen, Y.F., Li, L.Q., Xu, Q., Kong, Y.H., Wang, H., Wu, W.H., 2009. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21, 3554-3566.
    Chen, Z.C., Liao, H., 2016. Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J. Genet. Genomics 43, 631-638.
    Chiou, T.J., Aung, K., Lin, S.I., Wu C.C., Chiang, S.F., Su, C.L., 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412-421.
    Cordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: global food security and food for thought. Global Environ. Change 19, 292-305.
    de Magalhaes, J.V., Alves, V.M.C., de Novais, R.F., 1998. Nitrate uptake by corn under increasing periods of phosphorus starvation. J. Plant Nutr. 21, 1753-1763.
    Deng, S., Lu, L., Li, J., Du, Z., Liu, T., Li, W., Xu, F., Shi, L., Shou, H., Wang, C., 2020. Purple acid phosphatase 10c encodes a major acid phosphatase that regulates plant growth under phosphate-deficient conditions in rice. J. Exp. Bot. 71, 4321-4332.
    Dong, J., Ma, G., Sui, L., Wei, M., Satheesh, V., Zhang, R., Ge, S., Li, J., Zhang, T.E., Wittwer, C., et al., 2019. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Mol. Plant. 12, 1463-1473.
    Drescher, G.L., Slaton, N.A., Roberts, T.L., Smartt, A.D., 2021. Corn yield response to phosphorus and potassium fertilization in Arkansas. Crop, Forage & Turfgrass Management 7, e20120.
    Du, Q., Wang, K., Zou, C., Xu, C., Li, W.X., 2018. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiol. 177, 1743-1753.
    Duan, K., Yi, K., Dang, L., Huang, H., Wu, W., Wu, P., 2008. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J. 54, 965-975.
    Duff, S.M.G., Sarath, G., Plaxton, W.C., 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiol. Plantarum 90, 791-800.
    Fink, G., Alcamo, J., Florke, M., Reder, K., 2018. Phosphorus loadings to the world's largest lakes: sources and trends. Global Biogeochem. Cycles 32, 617-634.
    Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., Zhu, J.K., 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038-2043.
    Gamuyao, R., Chin, J.H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., Slamet-Loedin, I., Tecson-Mendoza, E.M., Wissuwa, M., Heuer, S., 2012. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488, 535-539.
    Gaude, N., Nakamura, Y., Scheible, N., Ohta, H., Dormann, P., 2008. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 56, 28-39.
    Gonzalez, E., Solano, R., Rubio, V., Leyva, A., Paz-Ares, J., 2005. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17, 3500-3512.
    Gonzalez-Munoz, E., Avendano-Vazquez, A.O., Montes, R.A., de Folter, S., Andres-Hernandez, L., Abreu-Goodger, C., Sawers, R.J., 2015. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Front. Plant Sci. 6, 341.
    Ham, B.K., Chen, J., Yan, Y., and Lucas, W.J., 2018. Insights into plant phosphate sensing and signaling. Curr. Opin. Biotechnol. 49, 1-9.
    Hamburger, D., Rezzonico, E., MacDonald-Comber Petetot, J., Somerville, C., Poirier, Y., 2002. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14, 889-902.
    He, K., Du, J., Han, X., Li, H., Kui, M., Zhang, J., Huang, Z., Fu, Q., Jiang, Y., Hu, Y., 2023. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. Plant Cell 35, 2132-2156.
    Heuer, S., Gaxiola, R., Schilling, R., Herrera-Estrella, L., Lopez-Arredondo, D., Wissuwa, M., Delhaize, E., Rouached, H., 2017. Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J. 90, 868-885.
    Hirsch, J., Marin, E., Floriani, M., Chiarenza, S., Richaud, P., Nussaume, L., Thibaud, M.C., 2006. Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie 88, 1767-1771.
    Holford, I.C.R., 1997. Soil phosphorus: its measurement, and its uptake by plants. Soil Res. 35, 227-240.
    Hong, Y., Zhao, J., Guo, L., Kim, S.C., Deng, X., Wang, G., Zhang, G., Li, M., Wang, X., 2016. Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62, 55-74.
    Hostetler, A.N., Morais de Sousa Tinoco, S., Sparks, E.E., 2024. Root responses to abiotic stress: a comparative look at root system architecture in maize and sorghum. J. Exp. Bot. 75, 553-562.
    Huang, C., Barker, S.J., Langridge, P., Smith, F.W., Graham, R.D., 2000. Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots. Plant Physiol. 124, 415-422.
    Jia, X.C., Liu, P., Lynch, J.P., 2018. Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil. J. Exp. Bot. 69, 4961-4970.
    Johnston, A.E., Poulton, P.R., Fixen, P.E., Curtin, D., 2014. Phosphorus: its efficient use in agriculture. Adv. Agron. 123, 177-228.
    Khan, G.A., Bouraine, S., Wege, S., Li, Y., de Carbonnel, M., Berthomieu, P., Poirier, Y., Rouached, H., 2014. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J. Exp. Bot. 65, 871-884.
    Kisko, M., Bouain, N., Safi, A., Medici, A., Akkers, R.C., Secco, D., Fouret, G., Krouk, G., Aarts, M.G., Busch, W., et al., 2018. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. Elife 7, e32077.
    Kohlen, W., Charnikhova, T., Liu, Q., Bours, R., Domagalska, M.A., Beguerie, S., Verstappen, F., Leyser, O., Bouwmeester, H., Ruyter-Spira, C., 2011. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 155, 974-987.
    Kuo, H.F., Chiou, T.J., 2011. The role of microRNAs in phosphorus deficiency signaling. Plant Physiol. 156, 1016-1024.
    Lambers, H., 2022. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 73, 17-42.
    Li, Z., Gao, Q., Liu, Y., He, C., Zhang, X., Zhang, J., 2011. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 233, 1129-1143.
    Li, J., Wu, F., He, Y., He, B., Gong, Y., Yahaya, B.S., Xie, Y., Xie, W., Xu, J., Wang, Q., et al., 2022. Maize transcription factor ZmARF4 confers phosphorus tolerance by promoting root morphological development. Int. J. Mol. Sci. 23.
    Liao, D., Sun, C., Liang, H., Wang, Y., Bian, X., Dong, C., Niu, X., Yang, M., Xu, G., Chen, A., et al., 2022. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato. Plant Cell 34, 4045-4065.
    Liu, D., 2021. Root developmental responses to phosphorus nutrition. J. Integr. Plant Biol. 63, 1065-1090.
    Liu, F., Chang, X.J., Ye, Y., Xie, W.B., Wu, P., Lian, X.M., 2011. Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice. Mol. Plant 4, 1105-1122.
    Liu, F., Xu, Y., Jiang, H., Jiang, C., Du, Y., Gong, C., Wang, W., Zhu, S., Han, G., Cheng, B., 2016. Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. Int. J. Mol. Sci. 17, 930.
    Liu, K.H., Liu, M., Lin, Z., Wang, Z.F., Chen, B., Liu, C., Guo, A., Konishi, M., Yanagisawa, S., Wagner, G., et al., 2022. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science 377, 1419-1425.
    Liu, T.Y., Huang, T.K., Tseng, C.Y., Lai, Y.S., Lin, S.I., Lin, W.Y., Chen, J.W., Chiou, T.J., 2012. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24, 2168-2183.
    Liu, T.Y., Huang, T.K., Yang, S.Y., Hong, Y.T., Huang, S.M., Wang, F.N., Chiang, S.F., Tsai, S.Y., Lu, W.C., Chiou, T.J., 2016c. Identification of plant vacuolar transporters mediating phosphate storage. Nat. Commun. 7, 11095.
    Liu, W., Sun, Q., Wang, K., Du, Q., Li, W.X., 2017. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis. New Phytol. 214, 734-744.
    Luo, B., Sahito, J.H., Zhang, H., Zhao, J., Yang, G., Wang, W., Guo, J., Zhang, S., Ma, P., Nie, Z., et al., 2024. SPX family response to low phosphorus stress and the involvement of ZmSPX1 in phosphorus homeostasis in maize. Front. Plant Sci. 15, 1385977.
    Lv, Q., Zhong, Y., Wang, Y., Wang, Z., Zhang, L., Shi, J., Wu, Z., Liu, Y., Mao, C., Yi, K., et al., 2014. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell 26, 1586-1597.
    Lynch, J.P., 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol. 156, 1041-1049.
    Ma, B., Zhang, L., Gao, Q., Wang, J., Li, X., Wang, H., Liu, Y., Lin, H., Liu, J., Wang, X., et al., 2021. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat. Genet. 53, 906-915.
    Maeda, Y., Konishi, M., Kiba, T., Sakuraba, Y., Sawaki, N., Kurai, T., Ueda, Y., Sakakibara, H., Yanagisawa, S., 2018. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nat. Commun. 9, 1376.
    Marschner, M., 1995. Mineral Nutrition of Vascular Plants. Academic Press Limited, London, UK.
    Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sanchez, J., Buckler, E., Doebley, J., 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. U. S. A 99, 6080-6084.
    Medici, A., Marshall-Colon, A., Ronzier, E., Szponarski, W., Wang, R., Gojon, A., Crawford, N.M., Ruffel, S., Coruzzi, G.M., Krouk, G., 2015. AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat. Commun. 6, 6274.
    Mogollon, J.M., Beusen, A.H.W., van Grinsven, H.J.M., Westhoek, H., Bouwman, A.F., 2018. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environ. Change 50, 149-163.
    Morais de Sousa, S., Clark, R.T., Mendes, F.V.F., Carlos de Oliveira, A., Vila, A.d.V.M.J., Parentoni, S. N., Kochian, L.V., Guimar Es, C.U.T., Magalh Es, J.V., 2012. A role for root morphology and related candidate genes in P acquisition efficiency in maize. Funct. Plant Biol. 39, 925-935.
    Mora-Macias, J., Ojeda-Rivera, J.O., Gutierrez-Alanis, D., Yong-Villalobos, L., Oropeza-Aburto, A., Raya-Gonzalez, J., Jimenez-Dominguez, G., Chavez-Calvillo, G., Rellan-Alvarez, R., Herrera-Estrella, L., 2017. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc. Natl. Acad. Sci. U.S.A. 114, E3563-E3572.
    Mudge, S.R., Rae, A.L., Diatloff, E., Smith, F.W., 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J. 31: 341-353.
    Muller, J., Toev, T., Heisters, M., Teller, J., Moore, K.L., Hause, G., Dinesh, D.C., Burstenbinder, K., Abel, S., 2015. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Dev. Cell 33, 216-230.
    Nagatoshi, Y., Ikazaki, K., Kobayashi, Y., Mizuno, N., Sugita, R., Takebayashi, Y., Kojima, M., Sakakibara, H., Kobayashi, N.I., Tanoi, K., et al., 2023. Phosphate starvation response precedes abscisic acid response under progressive mild drought in plants. Nat. Commun. 14, 5047.
    Nagy, R., Vasconcelos, M.J., Zhao, S., McElver, J., Bruce, W., Amrhein, N., Raghothama, K.G., Bucher, M., 2006. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol. (Stuttg) 8, 186-197.
    Naumann, C., Heisters, M., Brandt, W., Janitza, P., Alfs, C., Tang, N., Nienguesso, A.T., Ziegler, J., Imre, R., Mechtler, K., et al., 2022. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Curr. Biol. 32, 2189-2205.
    Okazaki, Y., Otsuki, H., Narisawa, T., Kobayashi, M., Sawai, S., Kamide, Y., Kusano, M., Aoki, T., Hirai, M.Y., Saito, K., 2013. A new class of plant lipid is essential for protection against phosphorus depletion. Nat. Commun. 4, 1510.
    Osorio, M.B., Ng, S., Berkowitz, O., De Clercq, I., Mao, C., Shou, H., Whelan, J., Jost, R., 2019. SPX4 acts on PHR1-dependent and -independent regulation of shoot phosphorus status in Arabidopsis. Plant Physiol. 181, 332-352.
    Pacak, A., Barciszewska-Pacak, M., Swida-Barteczka, A., Kruszka, K., Sega, P., Milanowska, K., Jakobsen, I., Jarmolowski, A., Szweykowska-Kulinska, Z., 2016. Heat stress affects Pi-related genes expression and inorganic phosphate deposition/accumulation in barley. Front. Plant Sci. 7, 926.
    Paszkowski, U., Kroken, S., Roux, C., Briggs, S.P., 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U. S. A 99, 13324-13329.
    Pedas, P., Husted, S., Skytte, K., Schjoerring, J.K., 2011. Elevated phosphorus impedes manganese acquisition by barley plants. Front. Plant Sci. 2, 37.
    Pei, L., Gao, X., Tian, X., Liu, N., Chen, M., Fernie, A.R., Li, H., 2024. A microRNA528-ZmLac3 module regulates low phosphate tolerance in maize. Plant J. 118, 2233-2248.
    Pei, L., Jin, Z., Li, K., Yin, H., Wang, J., Yang, A., 2013. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. Plant Physiol. Biochem. 70, 221-234.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return