Bejar, J., Hong, Y., Alvarez, M.C., 2002. An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera production. Transgenic Res. 11, 279-289.
|
Chen, S.L., Sha, Z.X., Ye, H.Q., 2003. Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryos. Aquaculture 218, 141-151.
|
Chen, S.L., Ye, H.Q., Sha, Z.X., Hong, Y., 2003. Derivation of embryonic cell lines from red sea bream blastulas. Journal of Fish Biology 63, 795-805.
|
Ciarlo, C., Kaufman, C.K., Kinikoglu, B., Michael, J., Yang, S., D'Amato, C., Blokzijl-Franke, S., den Hertog, J., Schlaeger, T.M., Zhou, Y., et al., 2017. A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development. Elife 6, e29145.
|
Ciarlo, C.A., Zon, L.I., 2016. Embryonic cell culture in zebrafish. Methods Cell Biol. 133, 1-10.
|
Cokus, S.J., De La Torre, M., Medina, E.F., Rasmussen, J. P., Ramirez-Gutierrez, J., Sagasti, A., Wang, F., 2019. Tissue-specific transcriptomes reveal gene expression trajectories in two maturing skin epithelial layers in zebrafish embryos. G3 (Bethesda) 9, 3439-3452.
|
Collodi, P., Kamei, Y., Sharps, A., Weber, D., Barnes, D., 1992. Fish embryo cell cultures for derivation of stem cells and transgenic chimeras. Mol. Mar. Biol. Biotechnol. 1, 257-265.
|
Duan, C., Korzh, V., Li, Y., Zhou, J., Liu, Y., Lu, L., Dai, W., Jiao, S., 2011. The conserved clusterin gene is expressed in the developing choroid plexus under the regulation of notch but not IGF signaling in zebrafish. Endocrinology 152, 1860-1871.
|
Etchin, J., Kanki, J.P., Look, A.T., 2011. Zebrafish as a model for the study of human cancer. Methods Cell Biol. 105, 309-337.
|
Fan, L., Collodi, P., 2006. Zebrafish embryonic stem cells. Methods Enzymol. 418, 64-77.
|
Fan, L., Crodian, J., Collodi, P. 2004. Culture of embryonic stem cell lines from zebrafish. Methods Cell Biol. 76, 151-160.
|
Fan, L., Crodian, J., Liu, X., Alestrom, A., Alestrom, P., Collodi, P., 2004. Zebrafish embryo cells remain pluripotent and germ-line competent for multiple passages in culture. Zebrafish 1, 21-26.
|
Fan, Z., Liu, L., Huang, X., Zhao, Y., Zhou, L., Wang, D., Wei, J., 2017. Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition. Dev. Growth Differ. 59, 83-93.
|
Farnsworth, D.R., Saunders, L.M., Miller, A.C., 2020. A single-cell transcriptome atlas for zebrafish development. Dev. Biol. 459, 100-108.
|
Fukazawa, C., Santiago, C., Park, K.M., Deery, W.J., Gomez de la Torre Canny, S., Holterhoff, C.K., Wagner, D.S., 2010. poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Dev. Biol. 346, 272-283.
|
Ghosh, C., Collodi, P., 1994. Culture of cells from zebrafish (Brachydanio rerio) blastula-stage embryos. Cytotechnology 14, 21-26.
|
Gistelinck, C., Gioia, R., Gagliardi, A., Tonelli, F., Marchese, L., Bianchi, L., Landi, C., Bini, L., Huysseune, A., Witten, P.E., et al., 2016. Zebrafish collagen type I: molecular and biochemical characterization of the major structural protein in bone and skin. Sci. Rep. 6, 21540.
|
Gong, Z., Ju, B., Wang, X., He, J., Wan, H., Sudha, P.M., Yan, T., 2002. Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. Dev. Dyn. 223, 204-215.
|
Harding, M.J., McGraw, H.F., Nechiporuk, A., 2014. The roles and regulation of multicellular rosette structures during morphogenesis. Development 141, 2549-2558.
|
He, M., Zhang, R., Jiao, S., Zhang, F., Ye, D., Wang, H., Sun, Y., 2020. Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors. PLoS Biol. 18, e3000561.
|
Helmrich, A., Barnes, D. 1998. Zebrafish embryonal cell culture. Methods Cell Biol. 59, 29-37.
|
Hemmati Brivanlou, A., Melton, D., 1997. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13-17.
|
Ho, S.Y., Goh, C.W., Gan, J.Y., Lee, Y.S., Lam, M.K., Hong, N., Hong, Y., Chan, W. K., Shu-Chien, A.C., 2014. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 11, 407-420.
|
Hong, N., Schartl, M., Hong, Y., 2014. Derivation of stable zebrafish ES-like cells in feeder-free culture. Cell Tissue Res. 357, 623-632.
|
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.
|
Huang, H., Lindgren, A., Wu, X., Liu, N.A., Lin, S., 2012. High-throughput screening for bioactive molecules using primary cell culture of transgenic zebrafish embryos. Cell Rep. 2, 695-704.
|
Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D.A., Kirschner, M.W., 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201.
|
Le Guellec, D., Morvan-Dubois, G., Sire, J.Y., 2004. Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int. J. Dev. Biol. 48, 217-231.
|
Lin, S., Long, W., Chen, J., Hopkins, N., 1992. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc. Natl. Acad. Sci. U. S. A. 89, 4519-4523.
|
Liu, H., Duncan, K., Helverson, A., Kumari, P., Mumm, C., Xiao, Y., Carlson, J.C., Darbellay, F., Visel, A., Leslie, E., et al., 2020. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. Elife 9, e51325 9.
|
Liu, S., Xu, J., Ai, Y., Zhang, Y., Li, S., Li, J., Li, Y., 2024. Derivation of zebrafish heart-related haploid cells. J. Mol. Cell Biol. 15, mjad077.
|
Ma, C., Fan, L., Ganassin, R., Bols, N., Collodi, P., 2001. Production of zebrafish germ-line chimeras from embryo cell cultures. Proc. Natl. Acad. Sci. U. S. A. 98, 2461-2466.
|
Martorana, M.L., Tawk, M., Lapointe, T., Barre, N., Imboden, M., Joulie, C., Geraudie, J., Vriz, S., 2001. Zebrafish keratin 8 is expressed at high levels in the epidermis of regenerating caudal fin. Int. J. Dev. Biol. 45, 449-452.
|
Mazutis, L., Gilbert, J., Ung, W.L., Weitz, D.A., Griffiths, A.D., Heyman, J.A., 2013. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870-891.
|
Mushtaq, M.Y., Verpoorte, R., Kim, H.K., 2013. Zebrafish as a model for systems biology. Biotechnol. Genet. Eng. Rev. 29, 187-205.
|
Na, H., Park, J., Jeon, H., Jin, S., Choe, C.P., 2021. Pharyngeal endoderm expression of nanos1 is dispensable for craniofacial development. Gene Expr. Patterns 41, 119202.
|
Onichtchouk, D., 2012. Pou5f1/oct4 in pluripotency control: insights from zebrafish. Genesis 50, 75-85.
|
Padmanabhan, K., Grobe, H., Cohen, J., Soffer, A., Mahly, A., Adir, O., Zaidel-Bar, R., Luxenburg, C., 2020. Thymosin β4 is essential for adherens junction stability and epidermal planar cell polarity. Development 147, dev193425.
|
Sanchez-Sanchez, A.V., Camp, E., Garcia-Espana, A., Leal-Tassias, A., Mullor, J.L., 2010. Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads. Dev. Dyn. 239, 672-679.
|
Schaffeld, M., Knappe, M., Hunzinger, C., Markl, J., 2003. cDNA sequences of the authentic keratins 8 and 18 in zebrafish. Differentiation 71, 73-82.
|
Smart, N., Risebro, C.A., Melville, A.A.D., Moses, K., Schwartz, R.J., Chien, K.R., Riley, P.R., 2007. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177-182.
|
Son, M.J., Gong, S.P., 2022. Feeder cell-dependent primary culture of single blastula-derived embryonic cell lines from marine medaka (Oryzias dancena). In Vitro Cell Dev. Biol. Anim. 58, 840-850.
|
Sun, J., Yan, L., Shen, W., Meng, A., 2018. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 145.
|
Sun, L., Bradford, C.S., Barnes, D.W., 1995. Feeder cell cultures for zebrafish embryonal cells in vitro. Mol. Mar. Biol. Biotechnol. 4, 43-50.
|
Sun, L., Bradford, C.S., Ghosh, C., Collodi, P., Barnes, D.W., 1995. ES-like cell cultures derived from early zebrafish embryos. Mol. Mar. Biol. Biotechnol. 4, 193-199.
|
Tat, J., Liu, M., Wen, X.Y., 2013. Zebrafish cancer and metastasis models for in vivo drug discovery. Drug Discov. Today Technol. 10, e83-89.
|
Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., Klein, A.M., 2018. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360, 981-987.
|
Wang, H., Liu, Y., Ye, D., Li, J., Liu, J., Deng, F., 2016. Knockdown of zebrafish Nanog increases primordial germ cells during early embryonic development. Dev. Growth Differ. 58, 355-366.
|
Wang, M., Zhao, K., Liu, M., Wang, M., Qiao, Z., Yi, S., Jiang, Y., Kou, X., Zhao, Y., Yin, J., et al., 2022. BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding. Protein Cell 13, 580-601.
|
Wang, X., Zhu, J., Wang, H., Deng, W., Jiao, S., Wang, Y., He, M., Zhang, F., Liu, T., Hao, Y., et al., 2023. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat. Commun. 14, 7918.
|
White, R.J., Collins, J.E., Sealy, I.M., Wali, N., Dooley, C.M., Digby, Z., Stemple, D. L., Murphy, D.N., Billis, K., Hourlier, T., et al., 2017. A high-resolution mRNA expression time course of embryonic development in zebrafish. Elife 6, e30860.
|
Xu, C., Tabebordbar, M., Iovino, S., Ciarlo, C., Liu, J., Castiglioni, A., Price, E., Liu, M., Barton, E.R., Kahn, C.R., et al., 2013. A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155, 909-921.
|
Yi, M., Hong, N., Hong, Y., 2009. Generation of medaka fish haploid embryonic stem cells. Science 326, 430-433.
|