8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

Stomatal maturomics: hunting genes regulating guard cell maturation and function formation from single-cell transcriptomes

doi: 10.1016/j.jgg.2024.05.004
Funds:

This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Science (XDA24010303), the National Natural Science Foundation of China (31770268), the Fundamental Research Funds for the Central Universities (WK2070000091), and the University of Science and Technology of China (Start-up fund to S.M.).

  • Received Date: 2024-05-14
  • Accepted Date: 2024-05-17
  • Rev Recd Date: 2024-05-17
  • Available Online: 2025-06-06
  • Publish Date: 2024-05-19
  • Stomata play critical roles in gas exchange and immunity to pathogens. While many genes regulating early stomatal development up to the production of young guard cells (GCs) have been identified in Arabidopsis, much less is known about how young GCs develop into mature functional stomata. Here we perform a maturomics study on stomata, with “maturomics” defined as omics analysis of the maturation process of a tissue or organ. We develop an integrative scheme to analyze three public stomata-related single-cell RNA-seq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation. The list, termed sc_586, is enriched with known regulators of stomatal maturation and functions. To validate the reliability of the dataset, we selected two candidate G2-like transcription factor genes, MYS1 and MYS2, to investigate their roles in stomata. These two genes redundantly regulate the size and hoop rigidity of mature GCs, and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures. Taken together, our results provide a valuable list of genes for studying GC maturation and function formation.
  • loading
  • Abe, M., Takahashi, T.,Komeda, Y., 1999. Cloning and characterization of an L1 layer-specific gene in Arabidopsis thaliana. Plant Cell Physiol. 40, 571-580.
    Adrian, J., Chang, J., Ballenger, C.E., Bargmann, B.O.R., Alassimone, J., Davies, K.A., Lau, O.S., Matos, J.L., Hachez, C., Lanctot, A., et al., 2015. Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Dev. Cell 33, 107-118.
    Allen, G.J., Kuchitsu, K., Chu, S.P., Murata, Y.,Schroeder, J.I., 1999. Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11, 1785-1798.
    Amsbury, S., Hunt, L., Elhaddad, N., Baillie, A., Lundgren, M., Verhertbruggen, Y., Scheller, H.V., Knox, J.P., Fleming, A.J.,Gray, J.E., 2016. Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr. Biol. 26, 2899-2906.
    Aylor, D.E., Parlange, J.-Y.,Krikorian, A.D., 1973. Stomatal mechanics. Am. J. Bot. 60, 163-171.
    Bates, G.W., Rosenthal, D.M., Sun, J., Chattopadhyay, M., Peffer, E., Yang, J., Ort, D.R.,Jones, A.M., 2012. A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. PLoS One 7, e49641.
    Bergmann, D.C.,Sack, F.D., 2007. Stomatal development. Annu. Rev. Plant Biol. 58, 163-181.
    Chen, Y., Li, W., Turner, J.A.,Anderson, C.T., 2021. PECTATE LYASE LIKE12 patterns the guard cell wall to coordinate turgor pressure and wall mechanics for proper stomatal function in Arabidopsis. Plant Cell 33, 3134-3150.
    Clough, S.J.,Bent, A.F., 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
    Dong, J., MacAlister, C.A.,Bergmann, D.C., 2009. BASL controls asymmetric cell division in Arabidopsis. Cell 137, 1320-1330.
    Fernandez-Santos, R., Izquierdo, Y., Lopez, A., Muniz, L., Martinez, M., Cascon, T., Hamberg, M.,Castresana, C., 2020. Protein profiles of lipid droplets during the hypersensitive defense response of Arabidopsis against Pseudomonas infection. Plant Cell Physiol. 61, 1144-1157.
    Fotster, S., Schmidt, L.K., Kopic, E., Anschutz, U., Huang, S.G., Schlucking, K., Koster, P., Waadt, R., Larrieu, A., Batistic, O., et al., 2019. Wounding-induced stomatal closure requires jasmonate-mediated activation of GORK K+ channels by a Ca2+ sensor-kinase CBL1-CIPK5 Complex. Dev. Cell 48, 87-+.
    Geng, H., Wang, Y., Xu, Y., Zhang, Y., Han, E., Peng, Y., Geng, Z., Liu, Y., Qin, Y.,Ma, S., 2023. Data-driven optimization yielded a highly-efficient CRISPR/Cas9 system for gene editing in Arabidopsis. bioRxiv, 2023.10.09.561629.
    Guo, H., Xiao, C., Liu, Q., Li, R., Yan, Z., Yao, X.,Hu, H., 2021. Two galacturonosyltransferases function in plant growth, stomatal development, and dynamics. Plant Physiol. 187, 2820-2836.
    Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.
    Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I.,Iba, K., 2006. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat. Cell Biol. 8, 391-397.
    Hosy, E., Vavasseur, A., Mouline, K., Dreyer, I., Gaymard, F., Poree, F., Boucherez, J., Lebaudy, A., Bouchez, D., Very, A.A., et al., 2003. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl. Acad. Sci. U. S. A. 100, 5549-5554.
    Hsu, P.K., Takahashi, Y., Merilo, E., Costa, A., Zhang, L., Kernig, K., Lee, K.H.,Schroeder, J.I., 2021. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc. Natl. Acad. Sci. U. S. A. 118, e2107280118.
    Imes, D., Mumm, P., Bohm, J., Al-Rasheid, K.A.S., Marten, I., Geiger, D.,Hedrich, R., 2013. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J. 74, 372-382.
    Jammes, F., Song, C., Shin, D., Munemasa, S., Takeda, K., Gu, D., Cho, D., Lee, S., Giordo, R., Sritubtim, S., et al., 2009. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc. Natl. Acad. Sci. U. S. A. 106, 20520-20525.
    Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J.K.,Torii, K.U., 2008. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20, 1775-1785.
    Leonhardt, N., Kwak, J.M., Robert, N., Waner, D., Leonhardt, G.,Schroeder, J.I., 2004. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16, 596-615.
    Li, Y., Beisson, F., Koo, A.J., Molina, I., Pollard, M.,Ohlrogge, J., 2007. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc. Natl. Acad. Sci. U. S. A. 104, 18339-18344.
    Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K.,Chen, L.L., 2017. CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant. 10, 530-532.
    Liu, Q., Huang, H.D., Chen, Y.Q., Yue, Z.C., Wang, Z.P., Qu, T.T., Xu, D.Y., Lu, S.Y.,Hu, H.H., 2022a. Two Arabidopsis MYB-SHAQKYF transcription repressors regulate leaf wax biosynthesis via transcriptional suppression on DEWAX. New Phytol. 236, 2115-2130.
    Liu, X.-s., Liang, C.-c., Hou, S.-g., Wang, X., Chen, D.-h., Shen, J.-l., Zhang, W.,Wang, M., 2020a. The LRR-RLK protein HSL3 regulates stomatal closure and the drought stress response by modulating hydrogen peroxide homeostasis. Front. Plant Sci. 11, 548034.
    Liu, Z., Hou, S., Rodrigues, O., Wang, P., Luo, D., Munemasa, S., Lei, J., Liu, J., Ortiz-Morea, F.A., Wang, X., et al., 2022b. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332-339.
    Liu, Z., Zhou, Y., Guo, J., Li, J., Tian, Z., Zhu, Z., Wang, J., Wu, R., Zhang, B., Hu, Y., et al., 2020b. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Mol. Plant 13, 1178-1193.
    Lopez-Anido, C.B., Vaten, A., Smoot, N.K., Sharma, N., Guo, V., Gong, Y., Anleu Gil, M.X., Weimer, A.K.,Bergmann, D.C., 2021. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev. Cell 56, 1043-1055.e1044.
    Ma, S., Bohnert, H.J.,Dinesh-Kumar, S.P., 2015. AtGGM2014, an Arabidopsis gene co-expression network for functional studies. Sci. China Life Sci. 58, 276-286.
    MacAlister, C.A., Ohashi-Ito, K.,Bergmann, D.C., 2007. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445, 537-540.
    Matos, J.L., Lau, O.S., Hachez, C., Cruz-Ramirez, A., Scheres, B.,Bergmann, D.C., 2014. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. eLife 3, e03271.
    McKown, K.H., Anleu Gil, M.X., Mair, A., Xu, S.L., Raissig, M.T.,Bergmann, D.C., 2023. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development. Plant Cell 35, 756-775.
    Meckel, T., Gall, L., Semrau, S., Homann, U.,Thiel, G., 2007. Guard cells elongate: relationship of volume and surface area during stomatal movement. Biophys. J. 92, 1072-1080.
    Merlot, S., Mustilli, A.C., Genty, B., North, H., Lefebvre, V., Sotta, B., Vavasseur, A.,Giraudat, J., 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30, 601-609.
    Meyer, S., Mumm, P., Imes, D., Endler, A., Weder, B., Al-Rasheid, K.A., Geiger, D., Marten, I., Martinoia, E.,Hedrich, R., 2010. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 63, 1054-1062.
    Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F.,Giraudat, J., 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089-3099.
    Nadeau, J.A.,Sack, F.D., 2002. Control of stomatal distribution on the Arabidopsis leaf surface. Science 296, 1697-1700.
    Negi, J., Matsuda, O., Nagasawa, T., Oba, Y., Takahashi, H., Kawai-Yamada, M., Uchimiya, H., Hashimoto, M.,Iba, K., 2008. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483-486.
    Negi, J., Moriwaki, K., Konishi, M., Yokoyama, R., Nakano, T., Kusumi, K., Hashimoto-Sugimoto, M., Schroeder, J.I., Nishitani, K., Yanagisawa, S., et al., 2013. A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis. Curr. Biol. 23, 479-484.
    Ohashi-Ito, K.,Bergmann, D.C., 2006. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell 18, 2493-2505.
    Peng, Y., Zuo, W., Zhou, H., Miao, F., Zhang, Y., Qin, Y., Liu, Y., Long, Y.,Ma, S., 2022. EXPLICIT-Kinase: A gene expression predictor for dissecting the functions of the Arabidopsis kinome. J. Integr. Plant Biol. 64, 1374-1393.
    Pillitteri, L.J., Sloan, D.B., Bogenschutz, N.L.,Torii, K.U., 2007. Termination of asymmetric cell division and differentiation of stomata. Nature 445, 501-505.
    Pillitteri, L.J.,Torii, K.U. 2012. Mechanisms of Stomatal Development, in: Merchant, S.S. (Eds.), Annu. Rev. Plant Biol., Vol 63, pp. 591-614.
    Rui, Y., Chen, Y., Kandemir, B., Yi, H., Wang, J.Z., Puri, V.M.,Anderson, C.T., 2018. Balancing strength and flexibility: how the synthesis, organization, and modification of guard cell walls govern stomatal development and dynamics. Front. Plant Sci. 9, 1202.
    Sessions, A., Weigel, D.,Yanofsky, M.F., 1999. The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J. 20, 259-263.
    Sun, G., Xia, M., Li, J., Ma, W., Li, Q., Xie, J., Bai, S., Fang, S., Sun, T., Feng, X., et al., 2022a. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell 34, 1890-1911.
    Sun, Z.H., Feng, Z.K., Ding, Y.L., Qi, Y.P., Jiang, S., Li, Z., Wang, Y., Qi, J.S., Song, C.P., Yang, S.H., et al., 2022b. RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. Mol. Plant 15, 1192-1210.
    Takemiya, A., Sugiyama, N., Fujimoto, H., Tsutsumi, T., Yamauchi, S., Hiyama, A., Tada, Y., Christie, J.M.,Shimazaki, K., 2013. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 4, 2094.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A.,Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.
    Tang, J., Yang, X., Xiao, C., Li, J., Chen, Y., Li, R., Li, S., Lu, S.,Hu, H., 2020. GDSL lipase Occluded Stomatal Pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. New Phytol. 228:1880-1896.
    Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S.,Rinn, J.L., 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386.
    Vahisalu, T., Kollist, H., Wang, Y.-F., Nishimura, N., Chan, W.-Y., Valerio, G., Lamminmaki, A., Brosche, M., Moldau, H., Desikan, R., et al., 2008. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487-U415.
    Wang, Z.P., Xing, H.L., Dong, L., Zhang, H.Y., Han, C.Y., Wang, X.C.,Chen, Q.J., 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144.
    Wege, S., De Angeli, A., Droillard, M.J., Kroniewicz, L., Merlot, S., Cornu, D., Gambale, F., Martinoia, E., Barbier-Brygoo, H., Thomine, S., et al., 2014. Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. Sci. Signal. 7, ra65.
    Woolfenden, H.C., Bourdais, G., Kopischke, M., Miedes, E., Molina, A., Robatzek, S.,Morris, R.J., 2017. A computational approach for inferring the cell wall properties that govern guard cell dynamics. Plant J. 92, 5-18.
    Yamauchi, S., Takemiya, A., Sakamoto, T., Kurata, T., Tsutsumi, T., Kinoshita, T.,Shimazaki, K., 2016. The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. Plant Physiol. 171, 2731-2743.
    Yang, M.,Sack, F.D., 1995. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7, 2227-2239.
    Yang, Y.Z., Costa, A., Leonhardt, N., Siegel, R.S.,Schroeder, J.I., 2008. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4, 6.
    Yephremov, A., Wisman, E., Huijser, P., Huijser, C., Wellesen, K.,Saedler, H., 1999. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11, 2187-2201.
    Yi, H., Chen, Y., Wang, J.Z., Puri, V.M.,Anderson, C.T., 2019. The stomatal flexoskeleton: how the biomechanics of guard cell walls animate an elastic pressure vessel. J. Exp. Bot. 70, 3561-3572.
    Zhang, T.Q., Chen, Y.,Wang, J.W., 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. Dev. Cell 56, 1056-1074 e1058.
    Zhang, X., Guo, H., Xiao, C., Yan, Z., Ning, N., Chen, G., Zhang, J.,Hu, H., 2023. PECTIN METHYLESTERASE INHIBITOR18 functions in stomatal dynamics and stomatal dimension. Plant Physiol. 192, 1603-1620.
    Zoulias, N., Harrison, E.L., Casson, S.A.,Gray, J.E., 2018. Molecular control of stomatal development. Biochem. J. 475, 441-454.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return