Abe, M., Takahashi, T.,Komeda, Y., 1999. Cloning and characterization of an L1 layer-specific gene in Arabidopsis thaliana. Plant Cell Physiol. 40, 571-580.
|
Adrian, J., Chang, J., Ballenger, C.E., Bargmann, B.O.R., Alassimone, J., Davies, K.A., Lau, O.S., Matos, J.L., Hachez, C., Lanctot, A., et al., 2015. Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Dev. Cell 33, 107-118.
|
Allen, G.J., Kuchitsu, K., Chu, S.P., Murata, Y.,Schroeder, J.I., 1999. Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11, 1785-1798.
|
Amsbury, S., Hunt, L., Elhaddad, N., Baillie, A., Lundgren, M., Verhertbruggen, Y., Scheller, H.V., Knox, J.P., Fleming, A.J.,Gray, J.E., 2016. Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr. Biol. 26, 2899-2906.
|
Aylor, D.E., Parlange, J.-Y.,Krikorian, A.D., 1973. Stomatal mechanics. Am. J. Bot. 60, 163-171.
|
Bates, G.W., Rosenthal, D.M., Sun, J., Chattopadhyay, M., Peffer, E., Yang, J., Ort, D.R.,Jones, A.M., 2012. A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. PLoS One 7, e49641.
|
Bergmann, D.C.,Sack, F.D., 2007. Stomatal development. Annu. Rev. Plant Biol. 58, 163-181.
|
Chen, Y., Li, W., Turner, J.A.,Anderson, C.T., 2021. PECTATE LYASE LIKE12 patterns the guard cell wall to coordinate turgor pressure and wall mechanics for proper stomatal function in Arabidopsis. Plant Cell 33, 3134-3150.
|
Clough, S.J.,Bent, A.F., 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
|
Dong, J., MacAlister, C.A.,Bergmann, D.C., 2009. BASL controls asymmetric cell division in Arabidopsis. Cell 137, 1320-1330.
|
Fernandez-Santos, R., Izquierdo, Y., Lopez, A., Muniz, L., Martinez, M., Cascon, T., Hamberg, M.,Castresana, C., 2020. Protein profiles of lipid droplets during the hypersensitive defense response of Arabidopsis against Pseudomonas infection. Plant Cell Physiol. 61, 1144-1157.
|
Fotster, S., Schmidt, L.K., Kopic, E., Anschutz, U., Huang, S.G., Schlucking, K., Koster, P., Waadt, R., Larrieu, A., Batistic, O., et al., 2019. Wounding-induced stomatal closure requires jasmonate-mediated activation of GORK K+ channels by a Ca2+ sensor-kinase CBL1-CIPK5 Complex. Dev. Cell 48, 87-+.
|
Geng, H., Wang, Y., Xu, Y., Zhang, Y., Han, E., Peng, Y., Geng, Z., Liu, Y., Qin, Y.,Ma, S., 2023. Data-driven optimization yielded a highly-efficient CRISPR/Cas9 system for gene editing in Arabidopsis. bioRxiv, 2023.10.09.561629.
|
Guo, H., Xiao, C., Liu, Q., Li, R., Yan, Z., Yao, X.,Hu, H., 2021. Two galacturonosyltransferases function in plant growth, stomatal development, and dynamics. Plant Physiol. 187, 2820-2836.
|
Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.
|
Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I.,Iba, K., 2006. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat. Cell Biol. 8, 391-397.
|
Hosy, E., Vavasseur, A., Mouline, K., Dreyer, I., Gaymard, F., Poree, F., Boucherez, J., Lebaudy, A., Bouchez, D., Very, A.A., et al., 2003. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl. Acad. Sci. U. S. A. 100, 5549-5554.
|
Hsu, P.K., Takahashi, Y., Merilo, E., Costa, A., Zhang, L., Kernig, K., Lee, K.H.,Schroeder, J.I., 2021. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc. Natl. Acad. Sci. U. S. A. 118, e2107280118.
|
Imes, D., Mumm, P., Bohm, J., Al-Rasheid, K.A.S., Marten, I., Geiger, D.,Hedrich, R., 2013. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J. 74, 372-382.
|
Jammes, F., Song, C., Shin, D., Munemasa, S., Takeda, K., Gu, D., Cho, D., Lee, S., Giordo, R., Sritubtim, S., et al., 2009. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc. Natl. Acad. Sci. U. S. A. 106, 20520-20525.
|
Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J.K.,Torii, K.U., 2008. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20, 1775-1785.
|
Leonhardt, N., Kwak, J.M., Robert, N., Waner, D., Leonhardt, G.,Schroeder, J.I., 2004. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16, 596-615.
|
Li, Y., Beisson, F., Koo, A.J., Molina, I., Pollard, M.,Ohlrogge, J., 2007. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc. Natl. Acad. Sci. U. S. A. 104, 18339-18344.
|
Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K.,Chen, L.L., 2017. CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant. 10, 530-532.
|
Liu, Q., Huang, H.D., Chen, Y.Q., Yue, Z.C., Wang, Z.P., Qu, T.T., Xu, D.Y., Lu, S.Y.,Hu, H.H., 2022a. Two Arabidopsis MYB-SHAQKYF transcription repressors regulate leaf wax biosynthesis via transcriptional suppression on DEWAX. New Phytol. 236, 2115-2130.
|
Liu, X.-s., Liang, C.-c., Hou, S.-g., Wang, X., Chen, D.-h., Shen, J.-l., Zhang, W.,Wang, M., 2020a. The LRR-RLK protein HSL3 regulates stomatal closure and the drought stress response by modulating hydrogen peroxide homeostasis. Front. Plant Sci. 11, 548034.
|
Liu, Z., Hou, S., Rodrigues, O., Wang, P., Luo, D., Munemasa, S., Lei, J., Liu, J., Ortiz-Morea, F.A., Wang, X., et al., 2022b. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332-339.
|
Liu, Z., Zhou, Y., Guo, J., Li, J., Tian, Z., Zhu, Z., Wang, J., Wu, R., Zhang, B., Hu, Y., et al., 2020b. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Mol. Plant 13, 1178-1193.
|
Lopez-Anido, C.B., Vaten, A., Smoot, N.K., Sharma, N., Guo, V., Gong, Y., Anleu Gil, M.X., Weimer, A.K.,Bergmann, D.C., 2021. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev. Cell 56, 1043-1055.e1044.
|
Ma, S., Bohnert, H.J.,Dinesh-Kumar, S.P., 2015. AtGGM2014, an Arabidopsis gene co-expression network for functional studies. Sci. China Life Sci. 58, 276-286.
|
MacAlister, C.A., Ohashi-Ito, K.,Bergmann, D.C., 2007. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445, 537-540.
|
Matos, J.L., Lau, O.S., Hachez, C., Cruz-Ramirez, A., Scheres, B.,Bergmann, D.C., 2014. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. eLife 3, e03271.
|
McKown, K.H., Anleu Gil, M.X., Mair, A., Xu, S.L., Raissig, M.T.,Bergmann, D.C., 2023. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development. Plant Cell 35, 756-775.
|
Meckel, T., Gall, L., Semrau, S., Homann, U.,Thiel, G., 2007. Guard cells elongate: relationship of volume and surface area during stomatal movement. Biophys. J. 92, 1072-1080.
|
Merlot, S., Mustilli, A.C., Genty, B., North, H., Lefebvre, V., Sotta, B., Vavasseur, A.,Giraudat, J., 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30, 601-609.
|
Meyer, S., Mumm, P., Imes, D., Endler, A., Weder, B., Al-Rasheid, K.A., Geiger, D., Marten, I., Martinoia, E.,Hedrich, R., 2010. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 63, 1054-1062.
|
Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F.,Giraudat, J., 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089-3099.
|
Nadeau, J.A.,Sack, F.D., 2002. Control of stomatal distribution on the Arabidopsis leaf surface. Science 296, 1697-1700.
|
Negi, J., Matsuda, O., Nagasawa, T., Oba, Y., Takahashi, H., Kawai-Yamada, M., Uchimiya, H., Hashimoto, M.,Iba, K., 2008. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483-486.
|
Negi, J., Moriwaki, K., Konishi, M., Yokoyama, R., Nakano, T., Kusumi, K., Hashimoto-Sugimoto, M., Schroeder, J.I., Nishitani, K., Yanagisawa, S., et al., 2013. A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis. Curr. Biol. 23, 479-484.
|
Ohashi-Ito, K.,Bergmann, D.C., 2006. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell 18, 2493-2505.
|
Peng, Y., Zuo, W., Zhou, H., Miao, F., Zhang, Y., Qin, Y., Liu, Y., Long, Y.,Ma, S., 2022. EXPLICIT-Kinase: A gene expression predictor for dissecting the functions of the Arabidopsis kinome. J. Integr. Plant Biol. 64, 1374-1393.
|
Pillitteri, L.J., Sloan, D.B., Bogenschutz, N.L.,Torii, K.U., 2007. Termination of asymmetric cell division and differentiation of stomata. Nature 445, 501-505.
|
Pillitteri, L.J.,Torii, K.U. 2012. Mechanisms of Stomatal Development, in: Merchant, S.S. (Eds.), Annu. Rev. Plant Biol., Vol 63, pp. 591-614.
|
Rui, Y., Chen, Y., Kandemir, B., Yi, H., Wang, J.Z., Puri, V.M.,Anderson, C.T., 2018. Balancing strength and flexibility: how the synthesis, organization, and modification of guard cell walls govern stomatal development and dynamics. Front. Plant Sci. 9, 1202.
|
Sessions, A., Weigel, D.,Yanofsky, M.F., 1999. The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J. 20, 259-263.
|
Sun, G., Xia, M., Li, J., Ma, W., Li, Q., Xie, J., Bai, S., Fang, S., Sun, T., Feng, X., et al., 2022a. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell 34, 1890-1911.
|
Sun, Z.H., Feng, Z.K., Ding, Y.L., Qi, Y.P., Jiang, S., Li, Z., Wang, Y., Qi, J.S., Song, C.P., Yang, S.H., et al., 2022b. RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. Mol. Plant 15, 1192-1210.
|
Takemiya, A., Sugiyama, N., Fujimoto, H., Tsutsumi, T., Yamauchi, S., Hiyama, A., Tada, Y., Christie, J.M.,Shimazaki, K., 2013. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 4, 2094.
|
Tamura, K., Stecher, G., Peterson, D., Filipski, A.,Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.
|
Tang, J., Yang, X., Xiao, C., Li, J., Chen, Y., Li, R., Li, S., Lu, S.,Hu, H., 2020. GDSL lipase Occluded Stomatal Pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. New Phytol. 228:1880-1896.
|
Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S.,Rinn, J.L., 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386.
|
Vahisalu, T., Kollist, H., Wang, Y.-F., Nishimura, N., Chan, W.-Y., Valerio, G., Lamminmaki, A., Brosche, M., Moldau, H., Desikan, R., et al., 2008. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487-U415.
|
Wang, Z.P., Xing, H.L., Dong, L., Zhang, H.Y., Han, C.Y., Wang, X.C.,Chen, Q.J., 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144.
|
Wege, S., De Angeli, A., Droillard, M.J., Kroniewicz, L., Merlot, S., Cornu, D., Gambale, F., Martinoia, E., Barbier-Brygoo, H., Thomine, S., et al., 2014. Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. Sci. Signal. 7, ra65.
|
Woolfenden, H.C., Bourdais, G., Kopischke, M., Miedes, E., Molina, A., Robatzek, S.,Morris, R.J., 2017. A computational approach for inferring the cell wall properties that govern guard cell dynamics. Plant J. 92, 5-18.
|
Yamauchi, S., Takemiya, A., Sakamoto, T., Kurata, T., Tsutsumi, T., Kinoshita, T.,Shimazaki, K., 2016. The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. Plant Physiol. 171, 2731-2743.
|
Yang, M.,Sack, F.D., 1995. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7, 2227-2239.
|
Yang, Y.Z., Costa, A., Leonhardt, N., Siegel, R.S.,Schroeder, J.I., 2008. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4, 6.
|
Yephremov, A., Wisman, E., Huijser, P., Huijser, C., Wellesen, K.,Saedler, H., 1999. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11, 2187-2201.
|
Yi, H., Chen, Y., Wang, J.Z., Puri, V.M.,Anderson, C.T., 2019. The stomatal flexoskeleton: how the biomechanics of guard cell walls animate an elastic pressure vessel. J. Exp. Bot. 70, 3561-3572.
|
Zhang, T.Q., Chen, Y.,Wang, J.W., 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. Dev. Cell 56, 1056-1074 e1058.
|
Zhang, X., Guo, H., Xiao, C., Yan, Z., Ning, N., Chen, G., Zhang, J.,Hu, H., 2023. PECTIN METHYLESTERASE INHIBITOR18 functions in stomatal dynamics and stomatal dimension. Plant Physiol. 192, 1603-1620.
|
Zoulias, N., Harrison, E.L., Casson, S.A.,Gray, J.E., 2018. Molecular control of stomatal development. Biochem. J. 475, 441-454.
|