8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 10
Oct.  2024
Turn off MathJax
Article Contents

GPR160 regulates the self-renewal and pluripotency of mouse embryonic stem cells via JAK1/STAT3 signaling pathway

doi: 10.1016/j.jgg.2024.05.003
Funds:

This work was funded by grants from the National Key Research and Development Program of China (2019YFA0801402), the National Natural Science Foundation of China (82271890), the Shanghai Key Clinical Specialty Project (shslczdzk05705), the Shanghai Top Priority Key Discipline Project (2017ZZ02019), Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZDCX20212200), and the Macau Science and Technology Development fund (FDCT) (0092/2022/A2 and 003/2022/ALC).

  • Received Date: 2024-02-11
  • Accepted Date: 2024-05-09
  • Rev Recd Date: 2024-05-08
  • Available Online: 2025-06-06
  • Publish Date: 2024-05-14
  • G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and regulate various physiological and pathological processes. Despite extensive studies, the roles of GPCRs in mouse embryonic stem cells (mESCs) remain poorly understood. Here, we show that GPR160, a class A member of GPCRs, is dramatically downregulated concurrent with mESC differentiation into embryoid bodies in vitro. Knockdown of Gpr160 leads to downregulation of the expression of pluripotency-associated transcription factors and upregulation of the expression of lineage markers, accompanying with the arrest of the mESC cell-cycle in the G0/G1 phase. RNA-seq analysis shows that GPR160 participates in the JAK/STAT signaling pathway crucial for maintaining ESC stemness, and the knockdown of Gpr160 results in the downregulation of STAT3 phosphorylation level, which in turn is partially rescued by colivelin, a STAT3 activator. Consistent with these observations, GPR160 physically interacts with JAK1, and cooperates with leukemia inhibitory factor receptor (LIFR) and gp130 to activate the STAT3 pathway. In summary, our results suggest that GPR160 regulates mESC self-renewal and pluripotency by interacting with the JAK1-LIFR-gp130 complex to mediate the JAK1/STAT3 signaling pathway.
  • loading
  • Abbas, A., Jun, P., Yuan, J. Y., Sun, L., Jiang, J., 2022. Downregulation of GPR160 inhibits the progression of glioma through suppressing epithelial to mesenchymal transition (EMT) biomarkers. Basic Clin Pharmacol Toxicol 131, 241-250.
    Alexander, S.P.H., Christopoulos, A., Davenport, A.P., Kelly, E., Mathie, A., Peters, J.A., Veale, E.L., Armstrong, J.F., Faccenda, E., Harding, S.D., et al., 2019. The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br. J. Pharmacol. 176 Suppl. 1, S21-S141.
    Benovic, J.L., DeBlasi, A., Stone, W.C., Caron, M.G., and Lefkowitz, R.J., 1989. Beta-adrenergic receptor kinase: primary structure delineates a multigene family. Science 246, 235-240.
    Bi, Y., Tu, Z., Zhang, Y., Yang, P., Guo, M., Zhu, X., Zhao, C., Zhou, J., Wang, H., Wang, Y., et al., 2020. Identification of ALPPL2 as a naive pluripotent state-specific surface protein essential for human naive pluripotency regulation. Cell Rep. 30, 3917-3931.
    Bourillot, P.Y., Aksoy, I., Schreiber, V., Wianny, F., Schulz, H., Hummel, O., Hubner, N., and Savatier, P., 2009. Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells 27, 1760-1771.
    Brown, A.J., Goldsworthy, S.M., Barnes, A.A., Eilert, M.M., Tcheang, L., Daniels, D., Muir, A.I., Wigglesworth, M.J., Kinghorn, I., Fraser, N.J., et al., 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319.
    Calder, A., Roth-Albin, I., Bhatia, S., Pilquil, C., Lee, J.H., Bhatia, M., Levadoux-Martin, M., McNicol, J., Russell, J., Collins, T., et al., 2013. Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev. 22, 279-295.
    Carr, R.M., Romecin Duran, P.A., Tolosa, E.J., Ma, C., Oseini, A.M., Moser, C.D., Banini, B.A., Huang, J., Asumda, F., Dhanasekaran, R., et al., 2020. The extracellular sulfatase SULF2 promotes liver tumorigenesis by stimulating assembly of a promoter-looping GLI1-STAT3 transcriptional complex. J. Biol. Chem. 295, 2698-2712.
    Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., and Dalton, S., 2005. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885-896.
    Casanova, E.A., Shakhova, O., Patel, S.S., Asner, I.N., Pelczar, P., Weber, F.A., Graf, U., Sommer, L., Burki, K., and Cinelli, P., 2011. Pramel7 mediates LIF/STAT3-dependent self-renewal in embryonic stem cells. Stem Cells 29, 474-485.
    Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V.B., Wong, E., Orlov, Y.L., Zhang, W., Jiang, J., et al., 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106-1117.
    Dijkman, R., van Doorn, R., Szuhai, K., Willemze, R., Vermeer, M.H., and Tensen, C.P., 2007. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood 109, 1720-1727.
    Do, D.V., Ueda, J., Messerschmidt, D.M., Lorthongpanich, C., Zhou, Y., Feng, B., Guo, G., Lin, P.J., Hossain, M.Z., Zhang, W., et al., 2013. A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes Dev. 27, 1378-1390.
    Dunn, S.J., Martello, G., Yordanov, B., Emmott, S., and Smith, A.G., 2014. Defining an essential transcription factor program for naive pluripotency. Science 344, 1156-1160.
    Gao, Y., Liu, X., Tang, B., Li, C., Kou, Z., Li, L., Liu, W., Wu, Y., Kou, X., Li, J., et al., 2017. Protein expression landscape of mouse embryos during pre-implantation development. Cell Rep. 21, 3957-3969.
    Gu, H., Shi, X., Liu, C., Wang, C., Sui, N., Zhao, Y., Gong, J., Wang, F., Zhang, H., Li, W., et al., 2019. USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5. Nat. Commun. 10, 1465.
    Guan, J., Wang, G., Wang, J., Zhang, Z., Fu, Y., Cheng, L., Meng, G., Lyu, Y., Zhu, J., Li, Y., et al., 2022. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature 605, 325-331.
    Guo, G., Yang, J., Nichols, J., Hall, J.S., Eyres, I., Mansfield, W., and Smith, A., 2009. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063-1069.
    Guo, W., Zhang, J., Zhou, Y., Zhou, C., Yang, Y., Cong, Z., et al., 2021. GPR160 is a potential biomarker associated with prostate cancer. Signal Transduct. Target. Ther. 6, 241.
    Hailesellasse Sene, K., Porter, C.J., Palidwor, G., Perez-Iratxeta, C., Muro, E.M., Campbell, P.A., Rudnicki, M.A., and Andrade-Navarro, M.A., 2007. Gene function in early mouse embryonic stem cell differentiation. BMC Genomics 8, 85.
    Hall, J., Guo, G., Wray, J., Eyres, I., Nichols, J., Grotewold, L., Morfopoulou, S., Humphreys, P., Mansfield, W., Walker, R., et al., 2009. Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell 5, 597-609.
    Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., et al., 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651-654.
    Hu, X., Li, J., Fu, M., Zhao, X., and Wang, W., 2021. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct. Target. Ther. 6, 402.
    Huang, G., Yan, H., Ye, S., Tong, C., and Ying, Q.L., 2014. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 32, 1149-1160.
    Kreuger, I.Z.M., Slieker, R.C., van Groningen, T., and van Doorn, R., 2023. Therapeutic strategies for targeting CDKN2A loss in melanoma. J. Invest. Dermatol. 143, 18-25.
    Lefkowitz, R.J., and Shenoy, S.K., 2005. Transduction of receptor signals by beta-arrestins. Science 308, 512-517.
    Liang, G., and Zhang, Y., 2013. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 23, 49-69.
    Liu, G., Yang, G., Zhao, G., Guo, C., Zeng, Y., Xue, Y., and Zeng, F., 2022. Spatial transcriptomic profiling to identify mesoderm progenitors with precision genomic screening and functional confirmation. Cell Prolif. 55, e13298.
    Liu, L., Michowski, W., Kolodziejczyk, A., and Sicinski, P., 2019. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol. 21, 1060-1067.
    Lynch, J.R., and Wang, J.Y., 2016. G protein-coupled receptor signaling in stem cells and cancer. Int. J. Mol. Sci. 17.
    Martello, G., Bertone, P., and Smith, A., 2013. Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J. 32, 2561-2574.
    Martello, G., and Smith, A., 2014. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 30, 647-675.
    Martin, G. R., 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A. 78, 7634.
    McWhinney, C.D., Hunt, R.A., Conrad, K.M., Dostal, D.E., and Baker, K.M., 1997. The type I angiotensin II receptor couples to Stat1 and Stat3 activation through Jak2 kinase in neonatal rat cardiac myocytes. J. Mol. Cell. Cardiol. 29, 2513-2524.
    Niwa, H., Burdon, T., Chambers, I., and Smith, A., 1998. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048-2060.
    Okita, K., and Yamanaka, S., 2006. Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr. Stem Cell Res. Ther. 1, 103-111.
    Ozmadenci, D., Feraud, O., Markossian, S., Kress, E., Ducarouge, B., Gibert, B., Ge, J., Durand, I., Gadot, N., Plateroti, M., et al., 2015. Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance. Nat. Commun. 6, 7398.
    Qin, Y., Verdegaal, E.M., Siderius, M., Bebelman, J.P., Smit, M.J., Leurs, R., Willemze, R., Tensen, C.P., and Osanto, S., 2011. Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: the constitutively active orphan GPCR GPR18 as novel drug target. Pigment Cell Melanoma Res. 24, 207-218.
    Regard, J. B., Sato, I. T., Coughlin, S. R., 2008. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561-571.
    Sandberg, E.M., Wallace, T.A., Godeny, M.D., VonDerLinden, D., and Sayeski, P.P., 2004. Jak2 tyrosine kinase: a true jak of all trades? Cell Biochem. Biophys. 41, 207-232.
    Schlomm, T., Luebke, A.M., Sultmann, H., Hellwinkel, O.J., Sauer, U., Poustka, A., David, K.A., Chun, F.K., Haese, A., Graefen, M., et al., 2005. Extraction and processing of high quality RNA from impalpable and macroscopically invisible prostate cancer for microarray gene expression analysis. Int. J. Oncol. 27, 713-720.
    Seyedabadi, M., Gharghabi, M., Gurevich, E.V., and Gurevich, V.V., 2021. Receptor-arrestin interactions: the GPCR perspective. Biomolecules 11, 218.
    Sheu, J.J., Lee, C.H., Ko, J.Y., Tsao, G.S., Wu, C.C., Fang, C.Y., Tsai, F.J., Hua, C.H., Chen, C.L., and Chen, J.Y., 2009. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 are genomic markers for prognosis of advanced nasopharyngeal carcinoma. Cancer Epidemiol. Biomarkers Prev. 18, 2709-2716.
    Sriram, K., Moyung, K., Corriden, R., Carter, H., and Insel, P.A., 2019. GPCRs show widespread differential mRNA expression and frequent mutation and copy number variation in solid tumors. PLoS Biol. 17, e3000434.
    Steelman, L.S., Pohnert, S.C., Shelton, J.G., Franklin, R.A., Bertrand, F.E., and McCubrey, J.A., 2004. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189-218.
    Tai, C.I., and Ying, Q.L., 2013. Gbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state. J. Cell Sci. 126, 1093-1098.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al., 1998. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282, 1145.
    Tinti, M., Kiemer, L., Costa, S., Miller, M.L., Sacco, F., Olsen, J.V., Carducci, M., Paoluzi, S., Langone, F., Workman, C.T., et al., 2013. The SH2 domain interaction landscape. Cell Rep. 3, 1293-1305.
    Wang, L., Xue, Y., Shen, Y., Li, W., Cheng, Y., Yan, X., Shi, W., Wang, J., Gong, Z., Yang, G., et al., 2012a. Claudin 6: a novel surface marker for characterizing mouse pluripotent stem cells. Cell Res. 22, 1082-1085.
    Wang, Q., Zou, Y., Nowotschin, S., Kim, S.Y., Li, Q.V., Soh, C.L., Su, J., Zhang, C., Shu, W., Xi, Q., et al., 2017. The p53 family coordinates wnt and nodal inputs in mesendodermal differentiation of embryonic stem cells. Cell Stem Cell 20, 70-86.
    Wang, X., Chen, X., Zhang, H., Qin, W., Xue, Y., and Zeng, F., 2012b. Shared gene regulation during human somatic cell reprogramming. J. Genet. Genomics 39, 613-623.
    Xu, H.E., and Xiao, R.P., 2012. A new era for GPCR research: structures, biology and drug discovery. Acta Pharmacol. Sin. 33, 289-290.
    Yan, Y., Yang, X., Li, T.T., Gu, K.L., Hao, J., Zhang, Q., and Wang, Y., 2017. Significant differences of function and expression of microRNAs between ground state and serum-cultured pluripotent stem cells. J. Genet. Genomics 44, 179-189.
    Yang, H., Liu, H., Chen, H., Mo, H., Chen, J., Huang, X., et al., 2016. G protein-coupled receptor160 regulates mycobacteria entry into macrophages by activating ERK. Cell Signal 28, 1145-1151.
    Yang, X., Pan, C., Ye, M., Liang, J., Cheng, H., Liang, Q., Huang, S., Wang, J., Chow, H.Y., and He, H., 2023. Drosophila adhesion GPCR Remoulade regulates axon growth, branching, and guidance by modulating Rac1 GTPase. J. Genet. Genomics 51, 458-461.
    Ye, S., Li, P., Tong, C., and Ying, Q.L., 2013. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J. 32, 2548-2560.
    Ye, S., Zhang, D., Cheng, F., Wilson, D., Mackay, J., He, K., Ban, Q., Lv, F., Huang, S., Liu, D., et al., 2016. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J. Cell Sci. 129, 269-276.
    Ying, Q.-L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A., 2008. The ground state of embryonic stem cell self-renewal. Nature 453, 519-523.
    Yosten, G. L., Harada, C. M., Haddock, C., Giancotti, L. A., Kolar, G. R., Patel, R., et al., 2020. GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J. Clin. Invest. 130, 2587-2592.
    Zhang, W., Chronis, C., Chen, X., Zhang, H., Spalinskas, R., Pardo, M., Chen, L., Wu, G., Zhu, Z., Yu, Y., et al., 2019. The BAF and PRC2 complex subunits Dpf2 and Eed antagonistically converge on Tbx3 to control ESC differentiation. Cell Stem Cell 24, 138-152.
    Zhou, C., Dai, X., Chen, Y., Shen, Y., Lei, S., Xiao, T., et al., 2016. G protein-coupled receptor GPR160 is associated with apoptosis and cell cycle arrest of prostate cancer cells. Oncotarget 7, 12823-12839.
    Zou, S., Tong, Q., Liu, B., Huang, W., Tian, Y., and Fu, X., 2020. Targeting STAT3 in cancer immunotherapy. Mol. Cancer 19, 145.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return