Al-Tam, F., Adam, H., Anjos, A. dos, Lorieux, M., Larmande, P., Ghesquiere, A., Jouannic, S., Shahbazkia, H.R., 2013. P-TRAP: a panicle trait phenotyping tool. BMC Plant Biol. 13, 122.
|
Amezquita, E.J., Quigley, M.Y., Ophelders, T., Landis, J.B., Koenig, D., Munch, E., Chitwood, D.H., 2021. Measuring hidden phenotype: quantifying the shape of barley seeds using the Euler characteristic transform. in silico Plants 4, diab033.
|
Amezquita, E.J., Quigley, M.Y., Ophelders, T., Munch, E., Chitwood, D.H., 2020. The shape of things to come: topological data analysis and biology, from molecules to organisms. Dev. Dynam. 249, 816-833.
|
Arino-Estrada, G., Mitchell, G.S., Saha, P., Arzani, A., Cherry, S.R., Blumwald, E., Kyme, A.Z., 2019. Imaging salt uptake dynamics in plants using PET. Sci. Rep. 9, 18626.
|
Borisjuk, L., Rolletschek, H., Neuberger, T., 2012. Surveying the plant's world by magnetic resonance imaging. Plant J. 70, 129-146.
|
Bucksch, A., Burridge, J., York, L.M., Das, A., Nord, E., Weitz, J.S., Lynch, J.P., 2014. Image-based high-throughput field phenotyping of crop roots. Plant Physiol. 166, 470-486.
|
Chandra, A.L., Desai, S.V., Guo, W., Balasubramanian, V.N., 2020. Computer Vision with Deep Learning for Plant Phenotyping in Agriculture: a Survey. (arXiv [cs.CV]).
|
Chang, T.-G., Chang, S., Song, Q.-F., Perveen, S., and Zhu, X.-G., 2019. Systems models, phenomics and genomics: three pillars for developing high-yielding photosynthetically efficient crops. In Silico Plants 1.
|
Crossa, J., Perez-Rodriguez, P., Cuevas, J., Montesinos-Lopez, O., Jarquin, D., de los Campos, G., Burgueno, J., Gonzalez-Camacho, J. M., Perez-Elizalde, S., Beyene, Y. et al., 2017. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 22, 961-975.
|
Demidchik, V.V., Shashko, A.Y., Bandarenka, U.Y., Smolikova, G.N., Przhevalskaya, D.A., Charnysh, M.A., Pozhvanov, G.A., Barkosvkyi, A.V., Smolich, I.I., Sokolik, A.I., et al., 2020. Plant phenomics: fundamental bases, software and hardware platforms, and machine learning. Russ. J. Plant Physiol. 67, 397-412.
|
Du, J., Lu, X., Fan, J., Qin, Y., Yang, X., Guo, X., 2020. Image-based high-throughput detection and phenotype evaluation method for multiple lettuce varieties. Front. Plant Sci. 11, 563386.
|
Duncan, K.E., Czymmek, K.J., Jiang, N., Thies, A.C., Topp, C.N., 2022. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. Plant Physiol. 188, 831-845.
|
Feng, H., Chen, Y., Song, J., Lu, B., Shu, C., Qiao, J., Liao, Y., Yang, W., 2024. Maturity classification of rapeseed using hyperspectral image combined with machine learning. Plant Phenomics 6, 139.
|
Furbank, R.T., Jimenez-Berni, J.A., George-Jaeggli, B., Potgieter, A.B., n.d. Deery D.M.,2019. Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytol 223 (4), 1714–1727.
|
Furbank, R.T., Tester, M., 2011. Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635-644.
|
Gimenez-Gallego, J., Gonzalez-Teruel, J.D., Jimenez-Buendia, M., Toledo-Moreo, A.B., Soto-Valles, F., Torres-Sanchez, R., 2019. Segmentation of multiple tree leaves pictures with natural backgrounds using deep learning for image-based agriculture applications. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 10, 202.
|
Gu, J., Yin, X., Stomph, T.-J., Wang, H., Struik, P.C., 2012. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J. Exp. Bot. 63, 5137-5153.
|
Guo, Q., Wu, F., Pang, S., Zhao, X., Chen, L., Liu, J., Xue, B., Xu, G., Li, L., Jing, H., Chu, C., 2018. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping. Sci. China Life Sci. 61, 328-339.
|
Hao, D., Asrar, G.R., Zeng, Y., Yang, X., Li, X., Xiao, J., Guan, K., Wen, J., Xiao, Q., Berry, J.A., et al., 2021. Potential of hotspot solar-induced chlorophyll fluorescence for better tracking terrestrial photosynthesis. Global Change Biol. 27, 2144-2158.
|
Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., Schreiber, F., 2011. HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinf. 12, 148.
|
Heeraman, D.A., Hopmans, J.W., Clausnitzer, V., 1997. Three dimensional imaging of plant roots in situ with X-ray Computed Tomography. Plant Soil 189, 167-179.
|
Holman, F.H., Riche, A.B., Michalski, A., Castle, M., Wooster, M.J., Hawkesford, M.J., 2016. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Rem. Sens. 8, 1031.
|
Houle, D., Govindaraju, D.R., Omholt, S., 2010. Phenomics: the next challenge. Nat. Rev. Genet. 11, 855-866.
|
Huang, X., Han, B., 2014. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65, 531-551.
|
Humplik, J.F., Lazar, D., Husickova, A., Spichal, L., 2015. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review. Plant Methods 11, 1-10.
|
Jiang, F., Lu, Y., Chen, Y., Cai, D., Li, n.d. G.,2020. Image recognition of four rice leaf diseases based on deep learning and support vector machine. Comput Electron Agric 179, 105824.
|
Jiang, N., Floro, E., Bray, A.L., Laws, B., Duncan, K.E., Topp, C.N., 2019. Three-dimensional time-lapse analysis reveals multiscale relationships in maize root systems with contrasting architectures. Plant Cell 31, 1708-1722.
|
Jiang, Z., Tu, H., Bai, B., Yang, C., Zhao, B., Guo, Z., Liu, Q., Zhao, H., Yang, W., Xiong, L., et al., 2021. Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress. New Phytol. 232, 440-455.
|
Johnson, X., Vandystadt, G., Bujaldon, S., Wollman, F.-A., Dubois, R., Roussel, P., Alric, J., Beal, D., 2009. A new setup for in vivo fluorescence imaging of photosynthetic activity. Photosynth. Res. 102, 85-93.
|
Keller, K., Kirchgessner, N., Khanna, R., Siegwart, R., Walter, A., Aasen, H., 2018. Soybean leaf coverage estimation with machine learning and thresholding algorithms for field phenotyping. In Proceedings of the British Machine Vision Conference, (Newcastle, UK).
|
Khan, I.H., Liu, H., Li, W., Cao, A., Wang, X., Liu, H., Cheng, T., Tian, Y., Zhu, Y., Cao, W., et al., 2021. Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat. Remote Sensing 13 (18), 3612.
|
Kim, M.-Y., Lee, K.H., 2022. Electrochemical sensors for sustainable precision agriculture-a review. Front. Chem. 10:848320.
|
Li, D., Quan, C., Song, Z., Li, X., Yu, G., Li, C., Muhammad, A., 2020. High-throughput plant phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab to the field. Front. Bioeng. Biotechnol. 8, 623705.
|
Li, L., Hassan, M.A., Yang, S., Jing, F., Yang, M., Rasheed, A., Wang, J., Xia, X., He, Z., Xiao, Y., 2022. Development of image-based wheat spike counter through a Faster R-CNN algorithm and application for genetic studies. Crop J. 10, 1303-1311.
|
Li, M., Frank, M.H., Coneva, V., Mio, W., Chitwood, D.H., Topp, C.N., 2018. The persistent homology mathematical framework provides enhanced genotype-to-phenotype associations for plant morphology. Plant Physiol. 177, 1382-1395.
|
Li, M., Klein, L.L., Duncan, K.E., Jiang, N., Chitwood, D.H., Londo, J.P., Miller, A.J., Topp, C.N., 2019. Characterizing 3D inflorescence architecture in grapevine using X-ray imaging and advanced morphometrics: implications for understanding cluster density. J. Exp. Bot. 70, 6261-6276.
|
Lin, Y., 2015. LiDAR: an important tool for next-generation phenotyping technology of high potential for plant phenomics? Comput. Electron. Agric. 119, 61-73.
|
Liu, F., Song, Q., Zhao, J., Mao, L., Bu, H., Hu, Y., Zhu, X.-G., 2021. Canopy occupation volume as an indicator of canopy photosynthetic capacity. New Phytol. 232, 941-956.
|
Lobet, G., 2017. Image analysis in plant sciences: publish then perish. Trends Plant Sci. 22, 559-566.
|
Long, S.P., Taylor, S.H., Burgess, S.J., Carmo-Silva, E., Lawson, T., De Souza, A.P., Leonelli, L., Wang, Y., 2022. Into the shadows and back into sunlight: photosynthesis in fluctuating light. Annu. Rev. Plant Biol. 73: 617-648.
|
Lu, J., Tan, L., Jiang, H., 2021. Review on Convolutional Neural Network (CNN) applied to plant leaf disease classification. Collect. FAO Agric. 11, 707.
|
Mairhofer, S., Zappala, S., Tracy, S., Sturrock, C., Bennett, M., Mooney, S., Pridmore, T., 2012. RooTrak: automated recovery of 3D plant root architecture in soil from X-ray Micro Computed Tomography using visual tracking. Plant Physiol. 158, 561-569.
|
Marsh, J.I., Hu, H., Gill, M., Batley, J., Edwards, D., 2021. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics. Theor. Appl. Genet. 134, 1677-1690.
|
Matthews, J.S.A., Vialet-Chabrand, S.R.M., Lawson, T., 2017. Diurnal variation in gas exchange: the balance between carbon fixation and water loss. Plant Physiol. 174: 614-623.
|
Metzner, R., Eggert, A., van Dusschoten, D., Pflugfelder, D., Gerth, S., Schurr, U., Uhlmann, N., Jahnke, S., 2015. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11: 17.
|
Minervini, M., Scharr, H., Tsaftaris, S.A., 2015. Image analysis: the new bottleneck in plant phenotyping. IEEE Signal Process. Mag. 32: 126-131.
|
Miyoshi, Y., Nagao, Y., Yamaguchi, M., Suzui, N., Yin, Y.-G., Kawachi, N., Yoshida, E., Takyu, S., Tashima, H., Yamaya, T. et al., 2021. Plant root PET: visualization of photosynthate translocation to roots in rice plant. J. Instrum. 16, C12018.
|
Mulero, G., Jiang, D., Bonfil, D.J., Helman, D., 2023. Use of thermal imaging and the photochemical reflectance index (PRI) to detect wheat response to elevated CO2 and drought. Plant Cell Environ. 46, 76-92.
|
Pasala, R., Pandey, B.B., 2020. Plant phenomics: high-throughput technology for accelerating genomics. J. Bio. Sci. 45.
|
Paulus, S., 2019. Measuring crops in 3D: using geometry for plant phenotyping. Plant Methods 15, 103.
|
Paulus, S., Mahlein, A.-K., 2020. Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale. GigaScience 9, giaa090.
|
Perez-Sanz, F., Navarro, P.J., Egea-Cortines, M., 2017. Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms. GigaScience 6, 1-18.
|
Pflugfelder, D., Metzner, R., van Dusschoten, D., Reichel, R., Jahnke, S., Koller, R., 2017. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Methods 13, 102.
|
Pieruschka, R., Schurr, U., 2019. Plant phenotyping: past, present, and future. Plant Phenomics 2019, 7507131.
|
Pineda, M., Baron, M., Perez-Bueno, M.-L., 2020. Thermal imaging for plant stress detection and phenotyping. Rem. Sens. 13, 68.
|
Prado, S.A., Cabrera-Bosquet, L., Grau, A., Coupel-Ledru, A., Millet, E.J., Welcker, C., Tardieu, F., 2018. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant Cell Environ. 41, 314-326.
|
Reymond, M., Muller, B., Leonardi, A., Charcosset, A., Tardieu, F., 2003. Combining quantitative trait Loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol. 131, 664-675.
|
Ronellenfitsch, H., Lasser, J., Daly, D.C., Katifori, E., 2015. Topological phenotypes constitute a new dimension in the phenotypic space of leaf venation networks. PLoS Comput. Biol. 11, e1004680.
|
Sandhu, J., Zhu, F., Paul, P., Gao, T., Dhatt, B.K., Ge, Y., Staswick, P., Yu, H., Walia, H., 2019. PI-Plat: a high-resolution image-based 3D reconstruction method to estimate growth dynamics of rice inflorescence traits. Plant Methods 15, 162.
|
Sandhu, K.S., Mihalyov, P.D., Lewien, M.J., Pumphrey, M.O., Carter, A.H., 2021. Combining genomic and phenomic information for predicting grain protein content and grain yield in spring wheat. Front. Plant Sci. 12: 613300.
|
Saric, R., Nguyen, V.D., Burge, T., Berkowitz, O., Trtilek, M., Whelan, J., Lewsey, M.G., Custovic, E., 2022. Applications of hyperspectral imaging in plant phenotyping. Trends Plant Sci. 27, 301-315.
|
Schneider, H.M., Postma, J.A., Kochs, J., Pflugfelder, D., Lynch, J.P., van Dusschoten, D., 2020. Spatio-temporal variation in water uptake in seminal and nodal root systems of barley plants grown in soil. Front. Plant Sci. 11, 1247.
|
Shafiekhani, A., Kadam, S., Fritschi, F.B., DeSouza, G.N., 2017. Vinobot and Vinoculer: two robotic platforms for high-throughput field phenotyping. Sensors 17, 214.
|
Shi, Z., Chang, T.-G., Chen, G., Song, Q., Wang, Y., Zhou, Z., Wang, M., Qu, M., Wang, B., Zhu, X.-G., 2019. Dissection of mechanisms for high yield in two elite rice cultivars. Field Crops Res. 241, 107563.
|
Shu, M., Dong, Q., Fei, S., Yang, X., Zhu, J., Meng, L., Li, B., Ma, Y., 2022. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images. Comput. Electron. Agric. 197, 106982.
|
Soltaninejad, M., Sturrock, C.J., Griffiths, M., Pridmore, T.P., Pound, M.P., 2020. Three dimensional root CT segmentation using multi-resolution encoder-decoder networks. IEEE Trans. Image Process. 29, 6667-6679.
|
Song, Q., Van Rie, J., Den Boer, B., Galle, A., Zhao, H., Chang, T., He, Z., Zhu, X.-G., 2022. Diurnal and seasonal variations of photosynthetic energy conversion efficiency of field grown wheat. Front. Plant Sci. 13, 817654.
|
Song, Q., Xiao, H., Xiao, X., Zhu, X.-G., 2016. A new canopy photosynthesis and transpiration measurement system (CAPTS) for canopy gas exchange research. Agric. For. Meteorol. 217, 101-107.
|
Sun, D., Robbins, K., Morales, N., Shu, Q., Cen, H., 2022. Advances in optical phenotyping of cereal crops. Trends Plant Sci. 27, 191-208.
|
Sun, Y., Gu, L., Wen, J., van Der Tol, C., 2023a. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I-Harnessing theory. Global Change Biol. 29, 2926-2952.
|
Sun, Z., Wang, X., Song, Y., Li, Q., Song, J., Cai, J., Zhou, Q., Zhong, Y., Jin, S., Jiang, D., 2023b. StomataTracker: revealing circadian rhythms of wheat stomata with in-situ video and deep learning. Comput. Electron. Agric. 212, 108120.
|
Taghavi Namin, S., Esmaeilzadeh, M., Najafi, M., Brown, T.B., Borevitz, J.O., 2018. Deep phenotyping: deep learning for temporal phenotype/genotype classification. Plant Methods 14, 66.
|
Tang, Z., Chen, Z., Gao, Y., Xue, R., Geng, Z., Bu, Q., Wang, Y., Chen, X., Jiang, Y., Chen, F., et al., 2023. A strategy for the acquisition and analysis of image-based phenome in rice during the whole growth period. Plant Phenomics 5, 58.
|
Tayade, R., Yoon, J., Lay, L., Khan, A.L., Yoon, Y., Kim, Y., 2022. Utilization of spectral indices for high-throughput phenotyping. Plants 11.
|
Tester, M., Langridge, P., 2010. Breeding technologies to increase crop production in a changing world. Science 327, 818-822.
|
Ubbens, J., Cieslak, M., Prusinkiewicz, P., Parkin, I., Ebersbach, J., Stavness, I., 2020. Latent space phenotyping: automatic image-based phenotyping for treatment studies. Plant Phenomics 2020, 5801869.
|
van Bezouw, R.F.H.M., Keurentjes, J.J.B., Harbinson, J., Aarts, M.G.M., 2019. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant J. 97, 112-133.
|
Vialet-Chabrand, S., Lawson, T., 2019. Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. J. Exp. Bot. 70, 2839-2855.
|
Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., Hawkesford, M.J., 2016. Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 44, 143-153.
|
Walter, A., Liebisch, F., Hund, A., 2015. Plant phenotyping: from bean weighing to image analysis. Plant Methods 11: 14.
|
Wang, C., Sun, M., Liu, L., Zhu, W., Liu, P., Li, X., 2022. A high-accuracy genotype classification approach using time series imagery. Biosyst. Eng. 220, 172-180.
|
Wang, H., Qian, X., Zhang, L., Xu, S., Li, H., Xia, X., Dai, L., Xu, L., Yu, J., Liu, X., 2018. A method of high throughput monitoring crop physiology using chlorophyll fluorescence and multispectral imaging. Front. Plant Sci. 9, 407.
|
Wang, Y., Song, Q., Jaiswal, D., P. de Souza, A., Long, S.P., Zhu, X.-G., 2017. Development of a three-dimensional ray-tracing model of sugarcane canopy photosynthesis and its application in assessing impacts of varied row spacing. Bioenergy Res. 10, 626-634.
|
Wang, Y.-H., Su, W.-H., 2022. Convolutional neural networks in computer vision for grain crop phenotyping: a review. Agronomy 12, 2659.
|
Wu, S., Wen, W., Xiao, B., Guo, X., Du, J., Wang, C., Wang, Y., 2019. An accurate skeleton extraction approach from 3D point clouds of maize plants. Front. Plant Sci. 10, 248.
|
Xiao, Y., Chang, T., Song, Q., Wang, S., Tholen, D., Wang, Y., Xin, C., Zheng, G., Zhao, H., Zhu, X.-G., 2017. ePlant for quantitative and predictive plant science research in the big data era -Lay the foundation for the future model guided crop breeding, engineering and agronomy. Quantitative Biology 5, 260-271.
|
Xiong, X., Yu, L., Yang, W., Liu, M., Jiang, N., Wu, D., Chen, G., Xiong, L., Liu, K., Liu, Q., 2017. A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods 13, 7.
|
Xu, Z., Valdes, C., Clarke, J., 2018. Existing and potential statistical and computational approaches for the analysis of 3D CT images of plant roots. Agronomy 8, 71.
|
Yang, W., Guo, Z., Huang, C., Duan, L., Chen, G., Jiang, N., Fang, W., Feng, H., Xie, W., Lian, X. et al., 2014. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 5, 5087.
|
Xue, Y., Chong, K., Han, B., Gui, J., Wang, T., Fu, X., Cheng, Z., 2015. New chapter of designer breeding in China: update on strategic program of molecular module-based designer breeding systems. Bull. Chin. Acad. Sci.
|
Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J.H., Batchelor, W.D., Xiong, L., Yan, J., 2020. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant 13, 187-214.
|
Yu, S., Ali, J., Zhou, S., Ren, G., Xie, H., Xu, J., Yu, X., Zhou, F., Peng, S., Ma, L. et al., 2022. From Green Super Rice to green agriculture: reaping the promise of functional genomics research. Mol. Plant 15, 9-26.
|
Zaman-Allah, M., Vergara, O., Araus, J. L., Tarekegne, A., Magorokosho, C., Zarco-Tejada, P. J., Hornero, A., Alba, A. H., Das, B., Craufurd, P. et al., 2015. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 11, 35.
|
Zeng, D., Li, M., Jiang, N., Ju, Y., Schreiber, H., Chambers, E., Letscher, D., Ju, T., Topp, C.N., 2021. TopoRoot: a method for computing hierarchy and fine-grained traits of maize roots from 3D imaging. Plant Methods 17, 127.
|
Zhang, C., Kong, J., Wu, D., Guan, Z., Ding, B., Chen, F., 2023. Wearable sensor: an emerging data collection tool for plant phenotyping. Plant Phenomics 5: 51.
|
Zhou, Y., Kusmec, A., Mirnezami, S.V., Attigala, L., Srinivasan, S., Jubery, T.Z., Schnable, J.C., Salas-Fernandez, M.G., Ganapathysubramanian, B., Schnable, P.S., 2021. Identification and utilization of genetic determinants of trait measurement errors in image-based, high-throughput phenotyping. Plant Cell 33, 2562-2582.
|
Zhu, X., Chang, T., Song, Q., Chang, S., Wang, C., Zhang, G., Guo, Y., Zhou, S., 2020. ePlant: scientific connotations, bottlenecks, and development strategies. Synth. Biol. J. 1, 285.
|
Zhu, X.G., Song, Q., Ort, D.R., 2012. Elements of a dynamic systems model of canopy photosynthesis. Curr. Opin. Plant Biol. 15: 237-244.
|
Zhu, X., Zhang, G., Tholen, D., Wang, Y., Xin, C., Song, Q., 2011. The next generation models for crops and agro-ecosystems. Sci. China Inf. Sci. 54, 589-597.
|
Zhu, X.-G., Lynch, J.P., LeBauer, D.S., Millar, A.J., Stitt, M., Long, S.P., 2016. Plants in silico: why, why now and what?-an integrative platform for plant systems biology research. Plant Cell Environ. 39, 1049-1057.
|
Zhu, X.G., Marcelis, L., 2023. Vertical farming for crop production. Mod. Agric. 1, 13-15.
|