8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 10
Oct.  2024
Turn off MathJax
Article Contents

S-acylation of YKT61 modulates its unconventional participation in the formation of SNARE complexes in Arabidopsis

doi: 10.1016/j.jgg.2024.04.007
Funds:

This work is supported by National Natural Science Foundation of China (31970332).

  • Received Date: 2024-02-02
  • Accepted Date: 2024-04-13
  • Rev Recd Date: 2024-04-11
  • Available Online: 2025-06-06
  • Publish Date: 2024-04-19
  • Hetero-tetrameric soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) complexes are critical for vesicle-target membrane fusion within the endomembrane system of eukaryotic cells. SNARE assembly involves four different SNARE motifs, Qa, Qb, Qc, and R, provided by three or four SNARE proteins. YKT6 is an atypical R-SNARE that lacks a transmembrane domain and is involved in multiple vesicle-target membrane fusions. Although YKT6 is evolutionarily conserved and essential, its function and regulation in different phyla seem distinct. Arabidopsis YKT61, the yeast and metazoan YKT6 homologue, is essential for gametophytic development, plays a critical role in sporophytic cells, and mediates multiple vesicle-target membrane fusion. However, its molecular regulation is unclear. We report here that YKT61 is S-acylated. Abolishing its S-acylation by a C195S mutation dissociates YKT61 from endomembrane structures and causes its functional loss. Although interacting with various SNARE proteins, YKT61 functions not as a canonical R-SNARE but coordinates with other R-SNAREs to participate in the formation of SNARE complexes. Phylum-specific molecular regulation of YKT6 may be evolved to allow more efficient SNARE assembly in different eukaryotic cells.
  • loading
  • Aniento, F., Sanchez de Medina Hernandez, V., Dagdas, Y., Rojas-Pierce, M., Russinova, E., 2022. Molecular mechanisms of endomembrane trafficking in plants. Plant Cell 34, 146-173.
    Baekkeskov, S., Kanaani, J., 2009. Palmitoylation cycles and regulation of protein function (Review). Mol. Membr. Biol. 26, 42-54.
    Bas, L., Papinski, D., Kraft, C., 2018. Ykt6 mediates autophagosome-vacuole fusion. Mol. Cell. Oncol. 5, e1526006.
    Bassham, D.C., Blatt, M.R., 2008. SNAREs: cogs and coordinators in signaling and development. Plant Physiol. 147, 1504-1515.
    Chai, S., Ge, F.R., Zhang, Y., Li, S., 2020. S-acylation of CBL10/SCaBP8 by PAT10 is crucial for its tonoplast association and function in salt tolerance. J. Integr. Plant Biol. 62, 718-722.
    Chen, H.M., Zou, Y., Shang, Y.L., Lin, H.Q., Wang, Y.J., Cai, R., Tang, X.Y., Zhou, J.M., 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 146, 368-376.
    Chen, Y., Shin, Y.K., Bassham, D.C., 2005. YKT6 is a core constituent of membrane fusion machineries at the Arabidopsis trans-Golgi network. J. Mol. Biol. 350, 92-101.
    Daste, F., Galli, T., Tareste, D., 2015. Structure and function of longin SNAREs. J. Cell Sci. 128, 4263-4272.
    Dietrich, L.E., Gurezka, R., Veit, M., Ungermann, C., 2004. The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion. EMBO J. 23, 45-53.
    Dietrich, L.E.P., Peplowska, K., LaGrassa, T.J., Hou, H.T., Rohde, J., Ungermann, C., 2005. The SNARE Ykt6 is released from yeast vacuoles during an early stage of fusion. EMBO Rep. 6, 245-250.
    Dilcher, M., Kohler, B., von Mollard, G.F., 2001. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem. 276, 34537-34544.
    Ebine, K., Okatani, Y., Uemura, T., Goh, T., Shoda, K., Niihama, M., Morita, M.T., Spitzer, C., Otegui, M.S., Nakano, A., et al., 2008. A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20, 3006-3021.
    El Kasmi, F., Krause, C., Hiller, U., Stierhof, Y.D., Mayer, U., Conner, L., Kong, L., Reichardt, I., Sanderfoot, A.A., Jurgens, G., 2013. SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol. Biol. Cell 24, 1593-1601.
    Feng, Q.N., Kang, H., Song, S.J., Ge, F.R., Zhang, Y.L., Li, E., Li, S., Zhang, Y., 2016. Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes. Plant Physiol. 170, 841-856.
    Feng, Q.N., Liang, X., Li, S., Zhang, Y., 2018. The ADAPTOR PROTEIN-3 complex mediates pollen tube growth by coordinating vacuolar targeting and organization. Plant Physiol. 177, 216-225.
    Fukasawa, M., Varlamov, O., Eng, W.S., Sollner, T.H., Rothman, J.E., 2004. Localization and activity of the SNARE Ykt6 determined by its regulatory domain and palmitoylation. Proc. Natl. Acad. Sci. U. S. A. 101, 4815-4820.
    Gao, J., Reggiori, F., Ungermann, C., 2018. A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles. J. Cell Biol. 217, 3670-3682.
    Greaves, J., Chamberlain, L.H., 2011. DHHC palmitoyl transferases: substrate interactions and (patho) physiology. Trends Biochem. Sci. 36, 245-253.
    Gu, X., Brennan, A., Wei, W., Guo, G., Lindsey, K., 2020. Vesicle transport in plants: a revised phylogeny of SNARE proteins. Evol. Bioinform. Online 16, 1176934320956575.
    Hemsley, P.A., Weimar, T., Lilley, K.S., Dupree, P., Grierson, C.S., 2013. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol. 197, 805-814.
    Huang, G.Q., Li, E., Ge, F.R., Li, S., Wang, Q., Zhang, C.Q., Zhang, Y., 2013. Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol. 200, 1089-1101.
    Jahn, R., Cafiso, D.C., Tamm, L.K., 2024. Mechanisms of SNARE proteins in membrane fusion. Nat. Rev. Mol. Cell Biol. 25, 101-118.
    Jennings, B.C., Nadolski, M.J., Ling, Y., Baker, M.B., Harrison, M.L., Deschenes, R.J., Linder, M.E., 2009. 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J. Lipid Res. 50, 233-242.
    Larson, E.R., Ortmannova, J., Donald, N.A., Alvim, J., Blatt, M.R., Zarsky, V., 2020. Synergy among exocyst and SNARE interactions identifies a functional hierarchy in secretion during vegetative growth. Plant Cell 32, 2951-2963.
    Li, L.S., Ying, J., Li, E., Ma, T., Li, M., Gong, L.M., Wei, G., Zhang, Y., Li, S., 2021. Arabidopsis CBP60b is a central transcriptional activator of immunity. Plant Physiol. 186, 1645-1659.
    Lipka, V., Kwon, C., Panstruga, R., 2007. SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23, 147-174.
    Ma, T., Li, E., Li, L.-S., Li, S., Zhang, Y., 2021. The Arabidopsis R-SNARE protein YKT61 is essential for gametophyte development. J. Integr. Plant Biol. 63, 676-694.
    Ma, T., Tan, J.R., Zhang, Y., Li, S., 2024. R-SNARE protein YKT61 mediates root apical meristem cell division via BRASSINOSTEROID-INSENSITIVE1 recycling. Plant Physiol. 194, 1467-1480.
    Martin, K., Kopperud, K., Chakrabarty, R., Banerjee, R., Brooks, R., Goodin, M.M., 2009. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J. 59, 150-162.
    Rossi, V., Banfield, D.K., Vacca, M., Dietrich, L.E., Ungermann, C., D'Esposito, M., Galli, T., Filippini, F., 2004. Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem. Sci. 29, 682-688.
    Sanderfoot, A., 2007. Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol. 144, 6-17.
    Takats, S., Glatz, G., Szenci, G., Boda, A., Horvath, G.V., Hegedus, K., Kovacs, A.L., Juhasz, G., 2018. Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. PLoS Genet. 14.
    Ungermann, C., Kummel, D., 2019. Structure of membrane tethers and their role in fusion. Traffic 20, 479-490.
    Wen, W.Y., Yu, J., Pan, L.F., Wei, Z.Y., Weng, J.W., Wang, W.N., Ong, Y.S., Tran, T.H.T., Hong, W.J., Zhang, M.J., 2010. Lipid-induced conformational switch controls fusion activity of longin domain SNARE Ykt6. Mol. Cell 37, 383-395.
    Xiong, F., Zhang, B.K., Liu, H.H., Wei, G., Wu, J.H., Wu, Y.N., Zhang, Y., Li, S., 2020. Transcriptional regulation of PLETHORA1 in the root meristem through an importin and its two antagonistic cargos. Plant Cell 32, 3812-3824.
    Yong, C.Q.Y., Tang, B.L., 2019. Another longin SNARE for autophagosome-lysosome fusion-how does Ykt6 work? Autophagy 15, 352-357.
    Zhang, Zhang, Liu, Hao, H., Jin, J.B., Lin, J., 2011. Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 6, e26129.
    Zhang, B., Karnik, R., Wang, Y., Wallmeroth, N., Blatt, M.R., Grefen, C., 2015. The Arabidopsis R-SNARE VAMP721 interacts with KAT1 and KC1 K+ channels to moderate K+ current at the plasma membrane. Plant Cell 27, 1697-1717.
    Zhang, L., Li, W., Wang, T., Zheng, F., Li, J., 2015. Requirement of R-SNAREs VAMP721 and VAMP722 for the gametophyte activity, embryogenesis and seedling root development in Arabidopsis. Plant Growth Regul. 77, 57-65.
    Zhou, L.Z., Li, S., Feng, Q.N., Zhang, Y.L., Zhao, X., Zeng, Y.L., Wang, H., Jiang, L., Zhang, Y., 2013. PROTEIN S-ACYL TRANSFERASE10 is critical for development and salt tolerance in Arabidopsis. Plant Cell 25, 1093-1107.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return