Alemany, A., Florescu, M., Baron, C.S., Peterson-Maduro, J., Van Oudenaarden, A., 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108-112.
|
Barker, N., Van Es, J.H., Kuipers, J., Kujala, P., Van Den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al., 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007.
|
Blum, N., Begemann, G., 2015. Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration. Development 142, 2894-2903.
|
Bowling, S., Sritharan, D., Osorio, F.G., Nguyen, M., Cheung, P., Rodriguez-Fraticelli, A., Patel, S., Yuan, W.C., Fujiwara, Y., Li, B.E., et al., 2020. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1410-1422.
|
Cole, L.K., Ross, L.S., 2001. Apoptosis in the developing zebrafish embryo. Dev. Biol. 240, 123-142.
|
Deng, S., Gong, H., Zhang, D., Zhang, M., He, X., 2024. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments. Nat. Methods. doi: 10.1038/s41592-024-02189-7.
|
Hou, Y., Lee, H.J., Chen, Y., Ge, J., Osman, F.O.I., McAdow, A.R., Mokalled, M.H., Johnson, S.L., Zhao, G., Wang, T., 2020. Cellular diversity of the regenerating caudal fin. Sci. Adv. 6, eaba2084.
|
Kawakami, K., 2007. Tol2: A versatile gene transfer vector in vertebrates. Genome Biol. 8, 1-10.
|
Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., Nusslein-Volhard, C., 2000. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Bio. 149, 875-888.
|
Kretzschmar, K., Watt, F.M., 2012. Lineage tracing. Cell.
|
Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., Parant, J.M., Yost, H.J., Kanki, J.P., Chien, C. B., 2007. The Tol2kit: A multisite gateway-based construction Kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088-3099.
|
Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M., Poss, K.D., 2005. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173-5183.
|
Li, L., Bowling, S., McGeary, S.E., Yu, Q., Lemke, B., Alcedo, K., Jia, Y., Liu, X., Ferreira, M., Klein, A.M., et al., 2023. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 186, 5183-5199.
|
Liu, K., Deng, S., Ye, C., Yao, Z., Wang, J., Gong, H., Liu, L., He, X., 2021. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat. Methods 18, 1506-1514.
|
Lu, R., Neff, N.F., Quake, S.R., Weissman, I.L., 2011. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29, 928-933.
|
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., Lanfear, R., Teeling, E., 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534.
|
Mosimann, C., Kaufman, C.K., Li, P., Pugach, E.K., Tamplin, O.J., Zon, L.I., 2011. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138, 169-177.
|
Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.
|
Pei, W., Feyerabend, T.B., Rossler, J., Wang, X., Postrach, D., Busch, K., Rode, I., Klapproth, K., Dietlein, N., Quedenau, C., et al 2017. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456-460.
|
Petrie, T.A., Strand, N.S., Tsung-Yang, C., Rabinowitz, J.S., Moon, R.T., 2014. Macrophages modulate adult zebrafish tail fin regeneration. Development 141, 2581-2591.
|
Pfefferli, C., Jazwinska, A., 2015. The art of fin regeneration in zebrafish. Regeneration 2, 72-83.
|
Poss, K.D., Shen, J., Nechiporuk, A., McMahon, G., Thisse, B., Thisse, C., Keating, M.T., 2000. Roles for Fgf signaling during zebrafish fin regeneration. Dev. Biol. 222, 347-358.
|
Raj, B., Wagner, D.E., McKenna, A., Pandey, S., Klein, A.M., Shendure, J., Gagnon, J.A., Schier, A.F., 2018. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36, 442-450.
|
Raz, E., 2003. Primordial germ-cell development: The zebrafish perspective. Nat Rev Genet. 4, 690-700.
|
Rodriguez-Fraticelli, A.E., Wolock, S.L., Weinreb, C.S., Panero, R., Patel, S.H., Jankovic, M., Sun, J., Calogero, R.A., Klein, A.M., Camargo, F.D., 2018. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212-216.
|
Salipante, S.J., Horwitz, M.S., 2006. Phylogenetic fate mapping. Proc Natl Acad Sci U S A 103, 5448-5453.
|
Sehring, I.M., Weidinger, G., 2020. Recent advancements in understanding fin regeneration in zebrafish. Wiley Interdiscip. Rev. Dev. Biol. 9, e367.
|
Spanjaard, B., Hu, B., Mitic, N., Olivares-Chauvet, P., Janjuha, S., Ninov, N., Junker, J.P., 2018. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469-473.
|
Sulston, J.E., Horvitz, H.R., 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110-156.
|
Sulston, J.E., Schierenberg, E., White, J.G., Thomson, J.N., 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64-119.
|
Tzung, K.W., Goto, R., Saju, J.M., Sreenivasan, R., Saito, T., Arai, K., Yamaha, E., Hossain, M.S., Calvert, M.E.K., Orban, L., 2015. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Reports 4, 61-73.
|
VanHorn, S., Morris, S.A., 2021. Next-generation lineage tracing and fate mapping to interrogate development. Dev. Cell. 56, 7-21.
|
Wagner, D.E., Klein, A.M., 2020. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410-427.
|
Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., Klein, A.M., 2018. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360, 981-987.
|
Walker, C., Streisinger, G., 1983. Induction of mutations by γ-rays in pregonial germ cells of zebrafish embryos. Genetics 103, 125-136.
|
Whitehead, G.G., Makino, S., Lien, C.L., Keating, M.T., 2005. Developmental biology: fgf20 is essential for initiating zebrafish fin regeneration. Science 310, 1957-1960.
|
Xu, S., Dai, Z., Guo, P., Fu, X., Liu, S., Zhou, L., Tang, W., Feng, T., Chen, M., Zhan, L., Wu, T., Hu, E., Jiang, Y., Bo, X., Yu, G., 2021. GgtreeExtra: Compact Visualization of Richly Annotated Phylogenetic Data. Mol. Biol. Evol. 38, 4039-4042.
|
Yoon, C., Kawakami, K., Hopkins, N., 1997. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124.
|
Yu, G., Lam, T.T.Y., Zhu, H., Guan, Y., 2018. Two methods for mapping and visualizing associated data on phylogeny using GGTree. Mol. Biol. Evol. 35, 3041-3043.
|
Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T.Y., 2017. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8.
|