8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 8
Aug.  2024
Turn off MathJax
Article Contents

A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance

doi: 10.1016/j.jgg.2024.04.001
Funds:

This study was supported by laboratory startup funds from Peking University and the Center for Life Sciences, as well as the grants from the National Science Foundation of China (32302455 and 32270672).

  • Received Date: 2023-12-22
  • Accepted Date: 2024-04-02
  • Rev Recd Date: 2024-04-02
  • Available Online: 2025-06-06
  • Publish Date: 2024-04-08
  • CRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects. They operate by Cas9 cleavage followed by homology-directed repair, copying the drive allele to the wild-type chromosome and thus increasing in frequency and spreading throughout a population. However, resistance alleles formed by end-joining repair pose a significant obstacle. To address this, we create a homing drive targeting the essential hairy gene in Drosophila melanogaster. Nonfunctional resistance alleles are recessive lethal, while drive carriers have a recoded “rescue” version of hairy. The drive inheritance rate is moderate, and multigenerational cage studies show drive spread to 96%-97% of the population. However, the drive does not reach 100% due to the formation of functional resistance alleles despite using four gRNAs. These alleles have a large deletion but likely utilize an alternate start codon. Thus, revised designs targeting more essential regions of a gene may be necessary to avoid such functional resistance. Replacement of the rescue element’s native 3' UTR with a homolog from another species increases drive inheritance by 13%-24%. This was possibly because of reduced homology between the rescue element and surrounding genomic DNA, which could also be an important design consideration for rescue gene drives.
  • loading
  • Adolfi, A., Gantz, V.M., Jasinskiene, N., Lee, H.F., Hwang, K., Terradas, G., Bulger, E.A., Ramaiah, A., Bennett, J.B., Emerson, J.J., et al., 2020. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nat. Commun. 11, 1-13.
    Anderson, M.A.E., Gonzalez, E., Ang, J.X.D., Shackleford, L., Nevard, K., Verkuijl, S.A.N., Edgington, M.P., Harvey-Samuel, T., Alphey, L., 2023. Closing the gap to effective gene drive in Aedes aegypti by exploiting germline regulatory elements. Nat. Commun. 14, 1-9.
    Basgall, E.M., Goetting, S.C., Goeckel, M.E., Giersch, R.M., Roggenkamp, E., Schrock, M.N., Halloran, M., Finnigan, G.C., 2018. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiol. Read. Engl. 164, 464-474.
    Bishop, A.L., Lopez, V., Amo, D., Okamoto, E.M., Bodai, Z., Komor, A.C., Gantz, V.M., 2022. Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles. Nat. Commun. 13, 1-11.
    Carballar-Lejarazu, R., Dong, Y., Pham, T.B., Tushar, T., Corder, R.M., Mondal, A., Sanchez C., H.M., Lee, H.-F., Marshall, J.M., et al., 2023. Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii. Proc. Natl. Acad. Sci. U. S. A. 120, e2221118120.
    Champer, J., Chung, J., Lee, Y.L., Liu, C., Yang, E., Wen, Z., Clark, A.G., Messer, P.W., 2019. Molecular safeguarding of CRISPR gene drive experiments. Elife 8, e41439.
    Champer, J., Lee, E., Yang, E., Liu, C., Clark, A.G., Messer, P.W., 2020a. A toxin-antidote CRISPR gene drive system for regional population modification. Nat. Commun. 11, 1082.
    Champer, J., Liu, J., Oh, S.Y., Reeves, R., Luthra, A., Oakes, N., Clark, A.G., Messer, P.W., 2018. Reducing resistance allele formation in CRISPR gene drive. Proc. Natl. Acad. Sci. U. S. A. 115, 5522-5527.
    Champer, J., Reeves, R., Oh, S.Y., Liu, C., Liu, J., Clark, A.G., Messer, P.W., 2017. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLOS Genet. 13, e1006796.
    Champer, J., Yang, E., Lee, E., Liu, J., Clark, A.G., Messer, P.W., 2020b. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proc. Natl. Acad. Sci. U. S. A. 117, 24377-24383.
    Champer, S.E., Oh, S.Y., Liu, C., Wen, Z., Clark, A.G., Messer, P.W., Champer, J., 2020c. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci. Adv. 6, eaaz0525.
    Chen, J., Xu, X., Champer, J., 2023a. Assessment of distant-site rescue elements for CRISPR toxin-antidote gene drives. Front. Bioeng. Biotechnol. 11, 1138702.
    Chen, W., Guo, J., Liu, Y., Champer, J., 2023b. Population suppression by release of insects carrying a dominant sterile homing gene drive targeting doublesex in Drosophila. bioRxiv 2023.07.17.549342. https://doi.org/10.1101/2023.07.17.549342.
    Davis, M.W., Jorgensen, E.M., 2022. ApE, a plasmid editor: a freely available DNA manipulation and visualization program. Front. Bioinform. 2, 818619.
    Du, J., Chen, W., Jia, X., Xu, X., Yang, E., Zhou, R., Zhang, Y., Metzloff, M., Messer, P.W., Champer, J., 2023. Germline Cas9 promoters show improved performance for homing gene drive. Nat. Commun. 15, 4560.
    Green, E., Jaouen, E., Klug, D., Olmo, R.P., Gautier, A., Blandin, S., Marois, E., 2023. A population modification gene drive targeting both Saglin and Lipophorin impairs plasmodium transmission in Anopheles mosquitoes. bioRxiv 2022.07.08.499187. https://doi.org/10.1101/2022.07.08.499187.
    Hammond, A.M., Kyrou, K., Bruttini, M., North, A., Galizi, R., Karlsson, X., Kranjc, N., Carpi, F.M., D’Aurizio, R., et al., 2017. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 13, e1007039.
    Harvey-Samuel, T., Feng, X., Okamoto, E.M., Purusothaman, D.-K., Leftwich, P.T., Alphey, L., Gantz, V.M., 2023. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus. Nat. Commun. 14, 7561.
    Hay, B.A., Oberhofer, G., Guo, M., 2021. Engineering the composition and fate of wild populations with gene drive. Annu. Rev. Entomol. 66, 407-434.
    Hoermann, A., Habtewold, T., Selvaraj, P., Del Corsano, G., Capriotti, P., Inghilterra, M.G., Kebede, T.M., Christophides, G.K., Windbichler, N., 2022. Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development. Sci. Adv. 8, eabo1733.
    Kandul, N.P., Liu, J., Bennett, J.B., Marshall, J.M., Akbari, O.S., 2021. A confinable home-and-rescue gene drive for population modification. Elife 10, e65939.
    Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., Nolan, T., Crisanti, A., 2018. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062-1066.
    Liu, J., Champer, J., Langmuller, A.M., Liu, C., Chung, J., Reeves, R., Luthra, A., Lee, Y.L., Vaughn, A.H., Clark, A.G., et al., 2019. Maximum likelihood estimation of fitness components in experimental evolution. Genetics 211, 1005-1017.
    Meccariello, A., Hou, S., Davydova, S., Fawcett, J., Siddall, A., Leftwich, P.T., Krsticevic, F., Papathanos, P.A., Windbichler, N., 2023. Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata. bioRxiv 2023.08.16.553191. https://doi.org/10.1101/2023.08.16.553191.
    Metzloff, M., Yang, E., Dhole, S., Clark, A.G., Messer, P.W., Champer, J., 2022. Experimental demonstration of tethered gene drive systems for confined population modification or suppression. BMC Biol. 20, 1-13.
    Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., Steinegger, M., 2022. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679-682.
    Pan, M., Champer, J., 2023. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model. Mol. Ecol. 32, 5673–5694.
    Pham, T.B., Phong, C.H., Bennett, J.B., Hwang, K., Jasinskiene, N., Parker, K., Stillinger, D., Marshall, J.M., Carballar-Lejarazu, R., James, A.A., 2019. Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLOS Genet. 15, e1008440.
    Reid, W., Williams, A.E., Sanchez-Vargas, I., Lin, J., Juncu, R., Olson, K.E., Franz, A.W.E., 2022. Assessing single-locus CRISPR/Cas9-based gene drive variants in the mosquito Aedes aegypti via single generation crosses and modeling. G3 12, jkac280.
    Shapiro, R.S., Chavez, A., Porter, C.B.M., Hamblin, M., Kaas, C.S., DiCarlo, J.E., Zeng, G., Xu, X., Revtovich, A.V., Kirienko, N.V., et al., 2018. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nat. Microbiol. 3, 73-82.
    Terradas, G., Buchman, A.B., Bennett, J.B., Shriner, I., Marshall, J.M., Akbari, O.S., Bier, E., 2021. Inherently confinable split-drive systems in Drosophila. Nat. Commun. 12, 1-12.
    Teufel, F., Almagro Armenteros, J.J., Johansen, A.R., Gislason, M.H., Pihl, S.I., Tsirigos, K.D., Winther, O., Brunak, S., von Heijne, G., Nielsen, H., 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023-1025.
    Unckless, R.L., Clark, A.G., Messer, P.W., 2017. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827-841.
    Verkuijl, S.A.N., Ang, J.X.D., Alphey, L., Bonsall, M.B., Anderson, M.A.E., 2022. The challenges in developing efficient and robust synthetic homing endonuclease gene drives. Front. Bioeng. Biotechnol. 10, 856981.
    Wang, G.-H., Du, J., Chu, C.Y., Madhav, M., Hughes, G.L., Champer, J., 2022. Symbionts and gene drive: two strategies to combat vector-borne disease. Trends Genet. 37, 708-723.
    Weitzel, A.J., Grunwald, H.A., Ceri, W., Levina, R., Gantz, V.M., Hedrick, S.M., Bier, E., Cooper, K.L., 2021. Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline. PLOS Biol. 19, e3001478.
    Xu, X.-R.S., Bulger, E.A., Gantz, V.M., Klanseck, C., Heimler, S.R., Auradkar, A., Bennett, J.B., Miller, L.A., Leahy, S., Juste, S.S., et al., 2020. Active genetic neutralizing elements for halting or deleting gene drives. Mol. Cell 80, 246-262.
    Yadav, A.K., Butler, C., Yamamoto, A., Patil, A.A., Lloyd, A.L., Scott, M.J., 2023. CRISPR/Cas9-based split homing gene drive targeting doublesex for population suppression of the global fruit pest Drosophila suzukii. Proc. Natl. Acad. Sci. U. S. A. 120, e2301525120.
    Yan, Y., Finnigan, G.C., 2019. Analysis of CRISPR gene drive design in budding yeast. Access Microbiol. 1, e000059.
    Yang, E., Metzloff, M., Langmuller, A.M., Xu, X., Clark, A.G., Messer, P.W., Champer, J., 2022. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles. G3 12, jkac081.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return