Agarwal, V., Bell, G.W., Nam, J.W., Bartel, D.P., 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, e05005.
|
Ambros, V., 2004. The functions of animal microRNAs. Nature 431, 350-355.
|
Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.
|
Betel, D., Koppal, A., Agius, P., Sander, C., Leslie, C., 2010. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90.
|
Bocchi, E.A., Vilas-Boas, F., Perrone, S., Caamano, A.G., Clausell, N., et al., 2005. I Latin American Guidelines for the Assessment and Management of Decompensated Heart Failure. Arq. Bras. Cardiol. 85 Suppl 3, 41-48.
|
Bragazzi, N.L., Zhong, W., Shu, J., Abu Much, A., Lotan, D., et al., 2021. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur. J. Prev. Cardiol. 28, 1682-1690.
|
Chen, L.L., 2020. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol. 21, 475-490.
|
Conrad, N., Judge, A., Tran, J., Mohseni, H., Hedgecott, D., et al., 2018. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391, 572-580.
|
Deng, Y., Wang, J., Xie, G., Zeng, X., Li, H., 2019. Circ-HIPK3 Strengthens the Effects of Adrenaline in Heart Failure by MiR-17-3p - ADCY6 Axis. Int. J. Biol. Sci. 15, 2484-2496.
|
Du, W.W., Xu, J., Yang, W., Wu, N., Li, F., et al., 2021. A Neuroligin Isoform Translated by circNlgn Contributes to Cardiac Remodeling. Circ. Res. 129, 568-582.
|
Gene Ontology, C., 2006. The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 34 (Database issue), D322-D326.
|
Geng, H., Chen, L., Su, Y., Xu, Q., Fan, M., et al., 2022. miR-431-5p regulates apoptosis of cardiomyocytes after acute myocardial infarction via targeting selenoprotein T. Physiol Res. 71, 55-62.
|
Glazar, P., Papavasileiou, P., Rajewsky, N., 2014. circBase: a database for circular RNAs. RNA 20, 1666-1670.
|
Griffiths-Jones, S., 2010. miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics Chapter 12, Unit 12, 11-10.
|
Halliday, B.P., Wassall, R., Lota, A.S., Khalique, Z., Gregson, J., et al., 2019. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393, 61-73.
|
Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., et al., 2011. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414-4422.
|
Huang, D.W., Sherman, B.T., Tan, Q., Kir, J., Liu, D., et al., 2007. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35(Web Server issue), W169-W175.
|
Huo, K.G., Richer, C., Berillo, O., Mahjoub, N., Fraulob-Aquino, J.C., et al., 2019. miR-431-5p Knockdown Protects Against Angiotensin II-Induced Hypertension and Vascular Injury. Hypertension 73, 1007-1017.
|
Kristensen, L.S., Okholm, T.L.H., Veno, M.T., Kjems, J., 2018. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. Rna Biol. 15, 280-291.
|
Kruger, J., Rehmsmeier, M., 2006. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34 (Web Server issue), W451-W454.
|
Li, H., Xu, J.D., Fang, X.H., Zhu, J.N., Yang, J., et al., 2020. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc. Res. 116, 1323-1334.
|
Li, X., Yang, L., Chen, L.L., 2018. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 71, 428-442.
|
Li, Y., Chen, B., Huang, S., 2018. Identification of circRNAs for miRNA Targets by Argonaute2 RNA Immunoprecipitation and Luciferase Screening Assays. Methods Mol. Biol. 1724, 209-218.
|
Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
|
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., et al., 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333-338.
|
Montgomery, R.L., Hullinger, T.G., Semus, H.M., Dickinson, B.A., Seto, A.G., et al., 2011. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124, 1537-1547.
|
Patel, S.K., Ramchand, J., Crocitti, V., Burrell, L.M., 2018. Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy. Int J Mol Sci 19.
|
Piwecka, M., Glazar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., et al., 2017. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357.
|
Rybak-Wolf, A., Stottmeister, C., Glazar, P., Jens, M., Pino, N., et al., 2015. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell 58, 870-885.
|
Salmena, L., Poliseno, L., Tay, Y., Kats, L., Pandolfi, P.P., 2011. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353-358.
|
Sanger, H.L., Klotz, G., Riesner, D., Gross, H.J., Kleinschmidt, A.K., 1976. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. U. S. A. 73, 3852-3856.
|
Stanojevic, D., Hoey, T., Levine, M., 1989. Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Kruppel in Drosophila. Nature 341, 331-335.
|
Sticht, C., De La Torre, C., Parveen, A., Gretz, N., 2018. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE 13, e0206239.
|
Wahlquist, C., Jeong, D., Rojas-Munoz, A., Kho, C., Lee, A., et al., 2014. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508, 531-535.
|
Wang, J., Niu, Y., Luo, L., Lu, Z., Chen, Q., et al., 2022. Decoding ceRNA regulatory network in the pulmonary artery of hypoxia-induced pulmonary hypertension (HPH) rat model. Cell Biosci. 12, 27.
|
Wang, K., Long, B., Liu, F., Wang, J.X., Liu, C.Y., et al., 2016. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J. 37, 2602-2611.
|
Wang, W., Wang, L., Yang, M., Wu, C., Lan, R., et al., 2021. Circ-SIRT1 inhibits cardiac hypertrophy via activating SIRT1 to promote autophagy. Cell Death Dis. 12, 1069.
|
Werfel, S., Nothjunge, S., Schwarzmayr, T., Strom, T.M., Meitinger, T., et al., 2016. Characterization of circular RNAs in human, mouse and rat hearts. J. Mol. Cell Cardiol. 98, 103-107.
|
Wixon, J., Kell, D., 2000. The Kyoto encyclopedia of genes and genomes--KEGG. Yeast 17, 48-55.
|
Wu, S., Chen, L., Zhou, X., 2022. Circular RNAs in the regulation of cardiac hypertrophy. Mol. Ther. Nucleic Acids 27, 484-490.
|
Zhang, X., Yuan, S., Liu, J., Tang, Y., Wang, Y., et al., 2022. Overexpression of cytosolic long noncoding RNA cytb protects against pressure-overload-induced heart failure via sponging microRNA-103-3p. Mol. Ther. Nucleic Acids 27, 1127-1145.
|
Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., et al., 2016. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215.
|