8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 8
Aug.  2024
Turn off MathJax
Article Contents

Engineering the future cereal crops with big biological data: toward intelligence-driven breeding by design

doi: 10.1016/j.jgg.2024.03.005
Funds:

This work was supported by the National Science Foundation of China (32341029), Science and Technology Innovation 2030 Major Projects (2023ZD0406804), and Outstanding Youth Team Cultivation Project of Center Universities (2662023PY007).

  • Received Date: 2023-10-30
  • Accepted Date: 2024-03-17
  • Rev Recd Date: 2024-03-17
  • Available Online: 2025-06-06
  • Publish Date: 2024-03-24
  • How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops. This review focuses on the major cereal crops, including rice, maize, and wheat, to explain how intelligence-driven breeding by design is becoming a reality.
  • loading
  • Athiyannan, N., Abrouk, M., Boshoff, W.H.P., Cauet, S., Rodde, N., Kudrna, D., Mohammed, N., Bettgenhaeuser, J., Botha, K.S., Derman, S.S., et al., 2022. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227-231.
    Baenziger, P.S., Russell, W.K., Graef, G.L., Campbell, B.T., 2006. Improving lives: 50 years of crop breeding, genetics, and cytology (C-1). Crop Sci. 46, 2230-2244.
    Bauer, A., Bostrom, A.G., Ball, J., Applegate, C., Cheng, T., Laycock, S., Rojas, S.M., Kirwan, J., Zhou, J., 2019. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: a case study of lettuce production. Hortic. Res. 6, 70.
    Bernardo, R., Yu, J., 2007. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47, 1082-1090.
    Chen, W., Chen, L., Zhang, X., Yang, N., Guo, J., Wang, M., Ji, S., Zhao, X., Yin, P., Cai, L., et al., 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375, eabg7985.
    Chen, J., Wang, Z., Tan, K., Huang, W., Shi, J., Li, T., Hu, J., Wang, K., Wang, C., Xin, B., et al., 2023. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221-1231.
    Cheng, M., Jiang, Y., Xu, J., Mentis, A. A., Wang, S., Zheng, H., Sahu, S.K., Liu, L., Xu, X., 2023. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. J. Genet. Genomics, 50, 625-640.
    Choi, J.Y., Lye, Z.N., Groen, S.C., Dai, X., Rughani, P., Zaaijer, S., Harrington, E.D., Juul, S., Purugganan, M.D., 2020. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biol. 21, 21.
    Choi, J.Y., Abdulkina, L.R., Yin, J., Chastukhina, I.B., Lovell, J.T., Agabekian, I.A., Young, P.G., Razzaque, S., Shippen, D.E., Juenger, T.E., et al., 2021. Natural variation in plant telomere length is associated with flowering time. Plant Cell 33, 1118-1134.
    Cooper, M., Gho, C., Leafgren, R., Tang, T., Messina, C., 2014a. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191-6204.
    Cooper, M., Technow, F., Messina, C., Gho C., Totir L.R., 2016. Use of crop growth models with whole-genome prediction: application to a maize multienvironment trial. Crop Sci. 56, 2141-2156.
    Cooper, M., Messina, C., Podlich, D., Totir, R., Baumgarten, A., Hausmann, N., Wright, D., Graham, G., 2014b. Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci. 65, 311-336.
    Cowling, W.A., Buirchell, B.J., Falk, D.E., 2009. A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop Pasture Sci. 60, 1009-1015.
    Deery, D.M., Rebetzke, G.J., Jimenez-Berni, J.A., James, R.A., Condon, A.G., Bovill, W.D., Hutchinson, P., Scarrow, J., Davy, R., Furbank, R.T., 2016. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front. Plant Sci. 7, 1808.
    Dixon, L.E., Greenwood, J.R., Bencivenga, S., Zhang, P., Cockram, J., Mellers, G., Ramm, K., Cavanagh, C., Swain, S.M., Boden, S.A., 2018. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 30, 563-581.
    Doebley, J.F., Gaut, B.S., Smith, B.D., 2006. The molecular genetics of crop domestication. Cell 127, 1309-1321.
    Du, H., Yu, Y., Ma, Y., Gao, Q., Cao, Y., Chen, Z., Ma, B., Qi, M., Li, Y., Zhao, X., et al., 2017. Sequencing and de novo assembly of a near complete indica rice genome. Nat. Commun. 8, 15324.
    Duan, L., Han, J., Guo, Z., Tu, H., Yang, P., Zhang, D., Fan, Y., Chen, G., Xiong, L., Dai, M., et al., 2018. Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Front. Plant Sci. 9, 492.
    Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., et al., 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92-95.
    Duvick, D., 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83-145.
    Fang, W., Feng, H., Yang, W., Duan, L., Chen, G., Xiong, L., Liu Q., 2016. High-throughput volumetric reconstruction for 3D wheat plant architecture studies. J. Innov. Opt. Health Sci. 9, 5, 1650037.
    Farina, M., Lavazza, A., Sartori, G., Pedrycz, W. 2024. Machine learning in human creativity: status and perspectives. AI Soc. https://doi.org/10.1007/s00146-023-01836-5.
    Fernie, A.R., Yan, J., 2019. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615-631.
    Flood, P.J., Kruijer, W., Schnabel, S.K., van der Schoor, R., Jalink, H., Snel, J.F., Harbinson, J., Aarts, M.G., 2016. Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12, 14.
    Fornasiero, A., Wing, R.A., Ronald, P., 2022. Rice domestication. Curr. Biol. 32, R20-R24.
    Fu, Y., Xiao, W., Tian, L., Guo, L., Ma, G., Ji, C., Huang, Y., Wang, H., Wu, X., Yang, T., et al., 2023. Spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development. Nat. Commun. 14, 7191.
    Garrido-Ramos, M.A., 2015. Satellite DNA in plants: more than just rubbish. Cytogenet. Genome Res. 146, 153-170.
    Ghosal, S., Blystone, D., Singh, A.K., Ganapathysubramanian, B., Singh, A., Sarkar, S., 2018. An explainable deep machine vision framework for plant stress phenotyping. Proc. Natl. Acad. Sci. U.S.A. 115, 4613-4618.
    Giuffrida, M.V., Doerner, P., Tsaftaris, S.A., 2018. Pheno-deep counter: a unified and versatile deep learning architecture for leaf counting. Plant J. 96, 880-890.
    Goff, S.A., Ricke,D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., et al., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100.
    Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S.J., Dauzat, M., Hamard, P., Thioux, J.J., Rolland, G., Bouchier-Combaud, S., Lebaudy, A., et al., 2006. Phenopsis, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169, 623-635.
    Gross, B.L., Olsen, K.M., 2010. Genetic perspectives on crop domestication. Trends Plant Sci. 15, 529-537.
    Gui, S., Wei, W., Jiang, C., Luo, J., Chen, L., Wu, S., Li, W., Wang, Y., Li, S., Yang, N., et al., 2022. A pan-Zea genome map for enhancing maize improvement. Genome Biol. 23, 178.
    Guo, T., Yu, X., Li, X., Zhang, H., Zhu, C., Flint-Garcia, S., McMullen, M.D., Holland, J.B., Szalma, S.J., Wisser, R.J., et al., 2019. Optimal designs for genomic selection in hybrid crops. Mol. Plant 12, 390-401.
    Guo, T., Lin, H.X., 2021. Creating future crops: a revolution for sustainable agriculture. J. Genet. Genomics 48, 97-101.
    Haberer, G., Kamal, N., Bauer, E., Gundlach, H., Fischer, I., Seidel, M.A., Spannagl, M., Marcon, C., Ruban, A., Urbany, C., et al., 2020. European maize genomes highlight intraspecies variation in repeat and gene content. Nat. Genet. 52, 950-957.
    Han, L., Zhong, W., Qian, J., Jin, M., Tian, P., et al., 2023. A multi-omics integrative network map of maize. Nat. Genet. 55, 144-153.
    Harfouche, A.L., Jacobson, D.A., Kainer, D., Romero, J.C., Harfouche, A.H., Scarascia Mugnozza, G., Moshelion, M., Tuskan, G.A., Keurentjes, J.J.B., Altman, A., 2019. Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol. 37, 1217-1235.
    Hoffmann A., 2023. Designer genes courtesy of artificial intelligence. Genes Dev. 37, 351-353.
    Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W.,et al., 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501.
    Huang, Y., Wang, H., Zhu, Y. et al., 2022. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 612, 292-300.
    Hufford, M.B., Seetharam, A.S., Woodhouse, M.R., Chougule, K.M., Ou, S., et al., 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655-662.
    Hufford, M.B., Xu, X., van Heerwaarden, J., Pyhajarvi, T., Chia, J. M., et al., 2012. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44, 808-811.
    Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V.S., Gundlach, H., et al., 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284-289.
    Jia, H., Li, M., Li, W., Liu, L., Jian, Y., Yang, Z., Shen, X., Ning, Q., Du, Y., Zhao, R.,et al., 2020. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat. Commun. 11, 988.
    Jia, Y., Jannink, J.L., 2012. Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192, 1513-1522.
    Jiang, S., Cheng, Q., Yan, J., Fu, R., Wang, X., 2020. Genome optimization for improvement of maize breeding. Theor. Appl. Genet. 133, 1491-1502.
    Jiao, Y., Zhao, H., Ren, L., Song, W., Zeng, B., Guo, J., Wang, B., Liu, Z, Chen, J., Li, W., et al., 2012. Genome-wide genetic changes during modern breeding of maize. Nat. Genet. 44, 812-815.
    Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M.C., Wang, B., Campbell, M.S., Stein, J.C., Wei, X., Chin, C.S., et al., 2017. Improved maize reference genome with single-molecule technologies. Nature 546, 524-527.
    Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
    Levy, A. A., Feldman, M., 2022. Evolution and origin of bread wheat. Plant Cell 34, 2549-2567.
    Li, Y. H., Zhou, G., Ma, J., Jiang, W., Jin, L. G., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L. et al., 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045-1052.
    Li, Q., Yan, J., 2020. Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Biol. 21, 154.
    Li, K., Jiang, W., Hui, Y., Kong, M., Feng, L. Y., Gao, L. Z., Li, P., Lu, S., 2021. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Mol. Plant 14, 1745-1756.
    Li, W., Liu, J., Zhang, H., Liu, Z., Wang, Y., Xing, L., He, Q., Du, H., 2022a. Plant pan-genomics: recent advances, new challenges, and roads ahead. J Genet Genomics 49, 833-846.
    Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L. et al., 2022b. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
    Li, W., Jia, H., Li, M., Huang, Y., Chen, W., Yin, P., Yang, Z., Chen, Q., Tian, F., Zhang, Z., et al., 2023. Divergent selection of KNR6 maximizes grain production by balancing the flowering-time adaptation and ear size in maize. Plant Biotechnol. J. 21, 1311-1313.
    Li H., Peng Z., Yang X., Wang W., Fu J., Wang J., Han, Y., Chai, Y., Guo, T., Yang, N. et al., 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 45, 43-50.
    Liang, Y., Liu, H. J., Yan, J., Tian, F., 2021. Natural variation in crops: realized understanding, continuing promise. Annu. Rev. Plant Biol. 72, 357-385.
    Liang L., Zhou L., Tang Y., Li N., Song T., Shao, W., Zhang, Z., Cai, P., Feng, F., Ma, Y., et al., 2019. A sequence-indexed mutator insertional library for maize functional genomics study. Plant Physiol. 181, 1404-1414.
    Lin, Z., Li, X., Shannon, L.M., Yeh, C.T., Wang, M.L., Bai, G., Peng, Z., Li, J., Trick, H.N., Clemente, T.E., et al., 2012. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44, 720-724.
    Liu, J., Seetharam, A.S., Chougule, K., Ou, S., Swentowsky, K.W., Gent, J.I., Llaca, V., Woodhouse, M.R., Manchanda, N., Presting, G.G., et al., 2020. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 21, 121.
    Liu, L., Gallagher, J., Arevalo, E.D., Chen, R., Skopelitis, T., Wu, Q., Bartlett, M., Jackson, D., 2021. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287-294.
    Liu, H.J., Jian, L., Xu, J., Zhang, Q., Zhang, M., Jin, M., Peng, Y., Yan, J., Han, B., Liu, J., et al., 2020. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397-1413.
    Logsdon, G.A., Vollger, M.R., Eichler, E.E., 2020. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597-614.
    Lu, X., Liu, J., Ren, W., Yang, Q., Chai, Z., Chen, R., Wang, L., Zhao, J., Lang, Z., Wang, H., et al., 2018. Gene-indexed mutations in maize. Mol. Plant 11, 496-504.
    Ma, H., Li G., Wurschum T., Zhang Y., Zheng D., Yang X., Li J., Liu W., Yan J., Chen S., 2018. Genome-wide association study of haploid male fertility in maize (Zea mays L.). Front. Plant Sci. 9, 974.
    Maccaferri, M., Harris, N.S., Twardziok, S.O., Pasam, R.K., Gundlach, H., Spannagl, M., Ormanbekova, D., Lux, T., Prade, V.M., Milner, S.G., et al., 2019. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885-895.
    Maes, W. H., Steppe, K., 2019. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 24, 152-164.
    Meuwissen, T.H.E., Goddard, M.E., 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evo. 28, 161-176.
    Meuwissen, T.H., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819-1829.
    Meyer, R.S., DuVal, A.E., Jensen, H.R., 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29-48.
    Michael, T.P., VanBuren, R., 2020. Building near-complete plant genomes. Curr. Opin. Plant Biol. 54, 26-33.
    Millet, E.J., Kruijer, W., Coupel-Ledru, A., Alvarez Prado, S., Cabrera-Bosquet, L., Lacube, S., Charcosset, A., Welcker, C., van Eeuwijk, F., Tardieu, F., 2019. Genomic prediction of maize yield across European environmental conditions. Nat. Genet. 51, 952-956.
    Mohanty, S.P., Hughes, D.P., Salathe, M., 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419.
    Olsen, K.M., Wendel, J.F., 2013. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 64, 47-70.
    Pankin, A., von Korff, M., 2017. Co-evolution of methods and thoughts in cereal domestication studies: a tale of barley (Hordeum vulgare). Curr. Opin. Plant Biol. 36, 15-21.
    Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., Li, X., et al., 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542-3558.
    Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J., Technow, F., Sulpice, R., Altmann, T., Stitt, M., Willmitzer, L., Melchinger, A. E., 2012. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat. Genet. 44, 217-220.
    Ross-Ibarra, J., Morrell, P.L., Gaut, B.S., 2007. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc. Natl. Acad. Sci. U.S.A. 104 Suppl. 1, 8641-8648.
    Runcie, D.E., Qu, J., Cheng, H., Crawford, L., 2021. MegaLMM: mega-scale linear mixed models for genomic predictions with thousands of traits. Genome Biol. 22, 213.
    Ren W., Zhao L., Liang J., Wang L., Chen L., Li P., Liu Z., Li, X., Zhang, Z., Li, J., et al., 2022. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nat. Plants 8, 1408-1422.
    Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A. et al., 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112-1115.
    Salzberg, S.L., 2019. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 20, 92.
    Shang, L., Li, X., He, H., Yuan, Q., Song, Y., Wei, Z., Lin, H., Hu, M., Zhao, F., Zhang, C., et al., 2022. A super pan-genomic landscape of rice. Cell Res. 32, 878-896.
    Shang, L., He, W., Wang, T., Yang, Y., Xu, Q., Zhao, X., Yang, L., Zhang, H., Li, X., Lv, Y., et al., 2023. A complete assembly of the rice Nipponbare reference genome. Mol. Plant 16, 1232-1236.
    Shi, J., Tian, Z., Lai, J., Huang, X., 2023. Plant pan-genomics and its applications. Mol. Plant 16, 168-186.
    Smykal, P., Nelson, M.N., Berger, J.D., von Wettberg, E.J.B., 2018. The impact of genetic changes during crop domestication. Agronomy 8, 119.
    Song, J.M., Xie, W. Z., Wang, S., Guo, Y.X., Koo, D.H., Kudrna, D., Gong, C., Huang, Y., Feng, J.W., Zhang, W., et al., 2021. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant 14, 1757-1767.
    Song, X., Meng, X., Guo, H., Cheng, Q., Jing, Y., Chen, M., Liu, G., Wang, B., Wang, Y., Li, J. et al., 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40, 1403-1411.
    Studer, A., Zhao, Q., Ross-Ibarra, J., Doebley, J., 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160-1163.
    Sun, S., Zhou, Y., Chen, J., Shi, J., Zhao, H., Zhao, H., Song, W., Zhang, M., Cui, Y., Dong, X., et al., 2018. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50, 1289-1295.
    Sun, Y., Shang, L., Zhu, Q.H., Fan, L., Guo, L., 2022. Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci. 27, 391-401.
    Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M., Ueguchi, C., 2003. The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513-520.
    Tao, Y., Zhao, X., Mace, E., Henry, R., Jordan, D., 2019. Exploring and exploiting pan-genomics for crop improvement. Mol. Plant 12, 156-169.
    Tsaftaris, S.A., Minervini, M., Scharr, H., 2016. Machine learning for plant phenotyping needs image processing. Trends Plant Sci. 21, 989-991.
    Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez, R.H., Kolodziej, M.C., Delorean, E., Thambugala, D., et al., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283.
    Wallace, J.G., Rodgers-Melnick, E., Buckler, E.S., 2018. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421-444.
    Walley, J.W., Sartor, R.C., Shen, Z., Schmitz, R.J., Wu, K.J., Urich, M.A., Nery, J.R., Smith, L.G., Schnable, J.C., Ecker, J.R., et al., 2016. Integration of omic networks in a developmental atlas of maize. Science 353, 814-818.
    Wang, X., Zhang, R., Song, W., Han, L., Liu, X., Sun, X., Luo, M., Chen, K., Zhang, Y., Yang, H., et al., 2019. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV). Sci. Rep. 9, 3458.
    Wang, B., Lin, Z., Li, X., Zhao, Y., Zhao, B., Wu, G., Ma, X., Wang, H., Xie, Y., Li, Q., et al., 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52, 565-571.
    Wang, Y., Huan, Q., Li, K., Qian, W., 2021. Single-cell transcriptome atlas of the leaf and root of rice seedlings. J. Genet. Genomics 48, 881-898.
    Wang, Z., Miao, L., Chen, Y., Peng, H., Ni, Z., Sun, Q., Guo, W., 2023. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J. Genet. Genomics, S1673-8527(23)00165-0.
    Wang, X.L., Wang, H.W., Liu, S.X., Ferjani, A., Li, J.S., Yan, J.B., Yang, X.H., Qin, F., 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233-1241.
    Wei, X., Qiu, J., Yong, K., Fan, J., Zhang, Q., Hua, H., Liu, J., Wang, Q., Olsen, K.M., Han, B., Huang, X., 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat. Genet. 53, 243-253.
    Wu, X., Feng, H., Wu, D., Yan, S., Zhang, P., Wang, W., Zhang, J., Ye, J., Dai, G., Fan, Y., et al., 2021. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22, 185.
    Yang, C., Shen, S., Zhou, S., Li, Y., Mao, Y., Zhou, J., Shi, Y., An, L., Zhou, Q., Peng, W., et al., 2022. Rice metabolic regulatory network spanning the entire life cycle. Mol. Plant 15, 258-275.
    Yang, W., Guo, Z., Huang, C., Duan, L., Chen, G., Jiang, N., Fang, W., Feng, H., Xie, W., Lian, X., et al., 2014. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun., 5, 5087.
    Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J.H., Batchelor, W.D., Xiong, L., Yan, J., 2020. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant 13, 187-214.
    Yang, W., Guo, T., Luo, J., Zhang, R., Zhao, J., Warburton, M.L., Xiao, Y., Yan, J., 2022. Target-oriented prioritization: targeted selection strategy by integrating organismal and molecular traits through predictive analytics in breeding. Genome Biol. 23, 80.
    Yu, H., Li, J., 2021. Short- and long-term challenges in crop breeding. Natl. Sci. Rev. 8, nwab002.
    Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., et al., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
    Zander, M., Lewsey, M.G., Clark, N.M., Yin, L., Bartlett, A., Saldierna Guzman, J.P., Hann, E., Langford, A.E., Jow, B., Wise, A., et al., 2020. Integrated multi-omics framework of the plant response to jasmonic acid. Nat. Plants 6, 290-302.
    Zhang, J., Chen, L.L., Xing, F., Kudrna, D.A., Yao, W., Copetti, D., Mu, T., Li, W., Song, J.M., Xie, W., et al., 2016. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc. Natl. Acad. Sci. U.S.A. 113, E5163-E5171.
    Zhang, X., Huang, C., Wu, D., Qiao, F., Li, W., Duan, L., Wang, K., Xiao, Y., Chen, G., Liu, Q., et al., 2017. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol. 173, 1554-1564.
    Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., et al., 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278-284.
    Zhang, Y., Fu, J., Wang, K., Han, X., Yan, T., Su, Y., Li, Y., Lin, Z., Qin, P., Fu, C., et al., 2022a. The telomere-to-telomere gap-free genome of four rice parents reveals SV and PAV patterns in hybrid rice breeding. Plant Biotechnol. J. 20, 1642-1644.
    Zhang, F., Xue, H., Dong, X., Li, M., Zheng, X., Li, Z., Xu, J., Wang, W., Wei, C., 2022b. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes. Genome Res. 32, 853-863.
    Zhu, W., Miao, X., Qian, J., Chen, S., Jin, Q., Li, M., Han, L., Zhong, W., Xie, D., Shang, X., et al., 2023. A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol. 24, 60.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return