8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 7
Jul.  2024
Turn off MathJax
Article Contents

Constructing the metabolic network of wheat kernels based on structure-guided chemical modification and multi-omics data

doi: 10.1016/j.jgg.2024.02.008
Funds:

The authors thank the high-performance computing platform and the mass spectrometry platform at the National Key Laboratory of Crop Genetic Improvement at Huazhong Agricultural University. This work was supported by the Young Top-notch Talent Cultivation Program of Hubei Province, the Natural Science Foundation for Distinguished Young Scientists of Hubei Province (2021CFA058), and the First-Class Discipline Construction Funds of College of Plant Science and Technology, Huazhong Agricultural University (2023ZKPY005).

  • Received Date: 2023-11-08
  • Accepted Date: 2024-02-27
  • Rev Recd Date: 2024-02-27
  • Available Online: 2025-06-06
  • Publish Date: 2024-03-06
  • Metabolic network construction plays a pivotal role in unraveling the regulatory mechanism of biological activities, although it often proves to be challenging and labor-intensive, particularly with non-model organisms. In this study, we develop a computational approach that employs reaction models based on the structure-guided chemical modification and related compounds to construct a metabolic network in wheat. This construction results in a comprehensive structure-guided network, including 625 identified metabolites and additional 333 putative reactions compared with the Kyoto Encyclopedia of Genes and Genomes database. Using a combination of gene annotation, reaction classification, structure similarity, and correlations from transcriptome and metabolome analysis, a total of 229 potential genes related to these reactions are identified within this network. To validate the network, the functionality of a hydroxycinnamoyltransferase (TraesCS3D01G314900) for the synthesis of polyphenols and a rhamnosyltransferase (TraesCS2D01G078700) for the modification of flavonoids are verified through in vitro enzymatic studies and wheat mutant tests, respectively. Our research thus supports the utility of structure-guided chemical modification as an effective tool in identifying causal candidate genes for constructing metabolic networks and further in metabolomic genetic studies.
  • loading
  • Alamgir, K.M., Hojo, Y., Christeller, J.T., Fukumoto, K., Isshiki, R., Shinya, T., Baldwin, I.T., Galis, I., 2016. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. Plant Cell Environ. 39, 453-466.
    Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., et al., 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918-920.
    Chen, W., Gong, L., Guo, Z.L., Wang, W.S., Zhang, H.Y., Liu, X.Q., Yu, S.B., Xiong, L.Z., Luo, J., 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant 6, 1769-1780.
    Dai, W.D., Tan, J.F., Lu, M.L., Xie, D.C., Li, P.L., Lv, H.P., Zhu, Y., Guo, L., Zhang, Y., Peng, Q.H., et al., 2016. Nontargeted modification-specific metabolomics investigation of glycosylated secondary metabolites in tea (Camellia sinensis L.) based on liquid chromatography-high-resolution mass spectrometry. J. Agric. Food Chem. 64, 6783-6790.
    Dai, Z.W., Plessis, A., Vincent, J., Duchateau, N., Besson, A., Dardevet, M., Prodhomme, D., Gibon, Y., Hilbert, G., Pailloux, M., et al., 2015. Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. Plant J. 83, 326-343.
    Dixon, R.A., Strack, D., 2003. Phytochemistry meets genome analysis, and beyond. Phytochemistry 62, 815-816.
    Fang, C.Y., Fernie, A.R., Luo, J., 2019. Exploring the diversity of plant metabolism. Trends Plant Sci. 24, 83-98.
    Federica, B., 2021. Adding to the understanding of grain filling processes through multiomics: high-throughput proteome and metabolome come into play. Plant J. 107, 667-668.
    Fernie, A.R., Tohge, T., 2017. The genetics of plant metabolism. Annu. Rev. Genet. 51, 287-310.
    Gaquerel, E., Gulati, J., Baldwin, I.T., 2014. Revealing insect herbivory-induced phenolamide metabolism: from single genes to metabolic network plasticity analysis. Plant J. 79, 679-692.
    Griss, J., Viteri, G., Sidiropoulos, K., Nguyen, V., Fabregat, A., Hermjakob, H., 2020. ReactomeGSA - efficient multi-omics comparative pathway analysis. Mol. Cell Proteomics 19, 2115-2125.
    Han, C., Zhen, S., Zhu, G., Bian, Y., Yan, Y., 2017. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. Plant Physiol. Biochem. 115, 320-327.
    Hansen, C.C., Nelson, D.R., Moller, B.L., Werck-Reichhart, D., 2021. Plant cytochrome P450 plasticity and evolution. Mol. Plant 14, 1244-1265.
    Hawkins, C., Ginzburg, D., Zhao, K.M., Dwyer, W., Xue, B., Xu, A., Rice, S., Cole, B., Paley, S., Karp, P., et al., 2021. Plant Metabolic Network 15: A resource of genome-wide metabolism databases for 126 plants and algae. J Integr Plant Biol 63, 1888-1905.
    Hernandez-de-Diego, R., Tarazona, S., Martinez-Mira, C., Balzano-Nogueira, L., Furio-Tari, P., Pappas, G.J., Jr., Conesa, A., 2018. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 46, W503-W509.
    Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., Ishiguro-Watanabe, M., 2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587-D592.
    Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30.
    Karp, P.D., Paley, S., Romero, P., 2002. The pathway tools software. Bioinformatics 18 Suppl 1, S225-232.
    Karunanithi, P.S., Zerbe, P., 2019. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci. 10, 1166.
    Kaur, H., Heinzel, N., Schottner, M., Baldwin, I.T., Galis, I., 2010. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol. 152, 1731-1747.
    Kliebenstein, D.J., Kroymann, J., Mitchell-Olds, T., 2005. The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology 8, 264-271.
    Kumar, S., Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: An overview. Sci. World J., 162750.
    Lacchini, E., Goossens, A., 2020. Combinatorial control of plant specialized metabolism: mechanisms, functions, and consequences. Annu. Rev. Cell Dev. Biol. 36, 291-313.
    Li, L., Kong, Z., Huan, X., Liu, Y., Liu, Y., Wang, Q., Liu, J., Zhang, P., Guo, Y., Qin, P., 2021. Transcriptomics integrated with widely targeted metabolomics reveals the mechanism underlying grain color formation in wheat at the grain-filling stage. Front. Plant Sci. 12, 757750.
    Li, Z., Lian, Y., Gong, P., Song, L., Hu, J., Pang, H., Ren, Y., Xin, Z., Wang, Z., Lin, T., 2022. Network of the transcriptome and metabolomics reveals a novel regulation of drought resistance during germination in wheat. Ann. Bot. 130, 717-735.
    Ling, H.Q., Zhao, S.C., Liu, D.C., Wang, J.Y., Sun, H., Zhang, C., Fan, H.J., Li, D., Dong, L.L., Tao, Y., et al., 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87-90.
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
    Maghsoudi, Z., Nguyen, H., Tavakkoli, A., Nguyen, T., 2022. A comprehensive survey of the approaches for pathway analysis using multi-omics data integration. Brief. Bioinform 23.
    Mierziak, J., Kostyn, K., Kulma, A., 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules 19, 16240-16265.
    Milacic, M., Beavers, D., Conley, P., Gong, C., Gillespie, M., Griss, J., Haw, R., Jassal, B., Matthews, L., May, B., et al., 2024. The Reactome Pathway Knowledgebase 2024. Nucleic Acids Res. 52, D672-D678.
    Mithen, R.F., Dekker, M., Verkerk, R., Rabot, S., Johnson, I.T., 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 80, 967-984.
    Morreel, K., Saeys, Y., Dima, O., Lu, F.C., Van de Peer, Y., Vanholme, R., Ralph, J., Vanholme, B., Boerjan, W., 2014. Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks. Plant Cell 26, 929-945.
    Notebaart, R.A., van Enckevort, F.H., Francke, C., Siezen, R.J., Teusink, B., 2006. Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7, 296.
    Paczkowska, M., Barenboim, J., Sintupisut, N., Fox, N.S., Zhu, H., Abd-Rabbo, D., Mee, M.W., Boutros, P.C., PCAWG Drivers and Functional Interpretation Working Group., Reimand, J. et al., 2020. Integrative pathway enrichment analysis of multivariate omics data. Nat Commun 11, 735.
    Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L., et al., 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 482-487.
    Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417-+.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.
    Shen, S., Peng, M., Fang, H., Wang, Z., Zhou, S., Jing, X., Zhang, M., Yang, C., Guo, H., Li, Y., et al., 2021. An Oryza-specific hydroxycinnamoyl tyramine gene cluster contributes to enhanced disease resistance. Science Bulletin 66, 2369-2380.
    Shi, T.T., Zhu, A.N., Jia, J.Q., Hu, X., Chen, J., Liu, W., Ren, X.F., Sun, D.F., Fernie, A.R., Cui, F., et al., 2020. Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines. Plant J. 103, 279-292.
    Shuang, Z., Arindam, G., Mitra Mahammad, B., Mitra Mohammadi, B., Prasad, B., Rajeev, K.V., Palak, C., Dong, J., Wolfram, W., 2021. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. Plant J. 107, 669-687.
    Stefan, K., Julien, H., Alexander, E., Joachim, K., David, R., Winfriede, W., Hans, W., 2015. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling. J. Exp. Bot. 66, 1397-1411.
    Sumner, L.W., Lei, Z., Nikolau, B.J., Saito, K., 2015. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat. Prod. Rep. 32, 212-229.
    Tian, Z.T., Liu, F.Z., Li, D.Q., Fernie, A.R., Chen, W., 2022. Strategies for structure elucidation of small molecules based on LC-MS/ MS data from complex biological samples. Comput. Struct. Biotechnol. J. 20, 5085-5097.
    Tsugawa, H., Rai, A., Saito, K., Nakabayashi, R., 2021. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat. Prod. Rep. 38, 1729-1759.
    Wang, L.L., Chen, K., Zhang, M., Ye, M., Qiao, X., 2022. Catalytic function, mechanism, and application of plant acyltransferases. Crit. Rev. Biotechnol. 42, 125-144.
    Wang, S.C., Alseekh, S., Fernie, A.R., Luo, J., 2019. The structure and function of major plant metabolite modifications. Mol. Plant 12, 899-919.
    Wishart, D.S., Kruger, R., Sivakumaran, A., Harford, K., Sanford, S., Doshi, R., Kehrtarpal, N., Fatokun, O., Doucet, D., Zubkowski, A., et al., 2024. PathBank 2.0-the pathway database for model organism metabolomics. Nucleic Acids Res. 52, D654-D662.
    Wu, J., Zhu, W.T., Shan, X.T., Liu, J.Y., Zhao, L.L., Zhao, Q., 2022. Glycoside-specific metabolomics combined with precursor isotopic labeling for characterizing plant glycosyltransferases. Mol. Plant 15, 1517-1532.
    Wu, Z., Guo, Z., Wang, K., Wang, R., Fang, C., 2023. Comparative metabolomic analysis reveals the role of OsHPL1 in the cold-induced metabolic changes in rice. Plants (Basel) 12, 2032.
    Yin, B., Jia, J., Sun, X., Hu, X., Ao, M., Liu, W., Tian, Z., Liu, H., Li, D., Tian, W., et al., 2024. Dynamic metabolite QTL analyses provide novel biochemical insights into kernel development and nutritional quality improvement in common wheat. Plant Commun. 100792.
    Yonekura-Sakakibara, K., Higashi, Y., Nakabayashi, R., 2019. The origin and evolution of plant flavonoid metabolism. Front. Plant Sci. 10, 943.
    Yu, C., Qi, X., Lin, Y., Li, Y., Shen, B., 2020. iODA: An integrated tool for analysis of cancer pathway consistency from heterogeneous multi-omics data. J. Biomed. Inform. 112, 103605.
    Yu, Y., Guo, G., Lv, D., Hu, Y., Li, J., Li, X., Yan, Y., 2014. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC Plant Biol. 14, 20.
    Zacares, L., Lopez-Gresa, M.P., Fayos, J., Primo, J., Belles, J.M., Conejero, V., 2007. Induction of p-coumaroyidopamine and feruloyidopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Mol. Plant Microbe Interact. 20, 1439-1448.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return