8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 6
Jun.  2024
Turn off MathJax
Article Contents

Reconstruct recent multi-population migration history by using identical-by-descent sharing

doi: 10.1016/j.jgg.2024.02.006
Funds:

This study was supported by the Fundamental Research Funds for the Central Universities (2023JBMC011), the National Natural Science Foundation of China (NSFC) Grant (12271026), the Beijing Natural Science Foundation Grant (L222051), and the Stanley Center for Psychiatric Research at Broad Institute. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

  • Received Date: 2023-10-24
  • Accepted Date: 2024-02-20
  • Rev Recd Date: 2024-02-19
  • Available Online: 2025-06-06
  • Publish Date: 2024-02-27
  • Identical-by-descent (IBD) is a fundamental genomic characteristic in population genetics and has been widely used for population history reconstruction. However, limited by the nature of IBD, which could only capture the relationship between two individuals/haplotypes, existing IBD-based history inference is constrained to two populations. In this study, we propose a framework by leveraging IBD sharing in multi-population and develop a method, MatrixIBD, to reconstruct recent multi-population migration history. Specifically, we employ the structured coalescent theory to precisely model the genealogical process and then estimate the IBD sharing across multiple populations. Within our model, we establish a theoretical connection between migration history and IBD sharing. Our method is rigorously evaluated through simulations, revealing its remarkable accuracy and robustness. Furthermore, we apply MatrixIBD to Central and South Asia in the Human Genome Diversity Project and successfully reconstruct the recent migration history of three closely related populations in South Asia. By taking into account the IBD sharing across multiple populations simultaneously, MatrixIBD enables us to attain clearer and more comprehensive insights into the history of regions characterized by complex migration dynamics, providing a holistic perspective on intricate patterns embedded within the recent population migration history.
  • loading
  • Bergstrom, A., McCarthy, S.A., Hui, R., Almarri, M.A., Ayub, Q., Danecek, P., Chen, Y., Felkel, S., Hallast, P., Kamm, J.J.S., 2020. Insights into human genetic variation and population history from 929 diverse genomes. Science 367(6484), eaay5012.
    Browning, B.L., Browning, S.R., 2011. A Fast Powerful Method for Detecting Identity by Descent. Am. J. Hum. Genet. 88(2), 173-182. https://doi.org/10.1016/j.ajhg.2011.01.010.
    Browning, B.L., Browning, S.R., 2013. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194(2), 459-471.
    Browning, B.L., Tian, X.W., Zhou, Y., Browning, S.R., 2021. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108(10), 1880-1890. https://doi.org/10.1016/j.ajhg.2021.08.005.
    Browning, S.R., Browning, B.L., 2010. High-Resolution Detection of Identity by Descent in Unrelated Individuals. Am. J. Hum. Genet. 86(4), 526-539. https://doi.org/10.1016/j.ajhg.2010.02.021.
    Browning, S.R., Browning, B.L., 2015. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent. Am. J. Hum. Genet. 97(3), 404-418. https://doi.org/10.1016/j.ajhg.2015.07.012.
    Browning, S.R., Thompson, E.A., 2012. Detecting Rare Variant Associations by Identity-by-Descent Mapping in Case-Control Studies. Genetics 190(4), 1521-1531. https://doi.org/10.1534/genetics.111.136937.
    Chen, X., Guo, W., Ni, X.M., 2021. Markov Jump Processes in Estimating Sharing of Identity by Descent. Acta. Math. Appl. Sin-E. 37(1), 183-191. https://doi.org/10.1007/s10255-021-0989-9.
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R., Genomes Project Analysis, G., 2011. The variant call format and VCFtools. Bioinformatics 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330.
    Gilbert, E., Shanmugam, A., Cavalleri, G.L., 2022. Revealing the recent demographic history of Europe via haplotype sharing in the UK Biobank. P. Natl. Acad. Sci. 119(25), e2119281119. https://doi.org/10.1073/pnas.2119281119.
    Gusev, A., Lowe, J.K., Stoffel, M., Daly, M.J., Altshuler, D., Breslow, J.L., Friedman, J.M., Pe'er, I., 2009. Whole population, genome-wide mapping of hidden relatedness. Genome Res. 19(2), 318-326. https://doi.org/10.1101/gr.081398.108.
    Hudson, R.R., 2002. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2), 337-338. https://doi.org/DOI 10.1093/bioinformatics/18.2.337.
    Johnson, S.G., 2007. The NLopt nonlinear-optimization package. http://github.com/stevengj/nlopt.
    Kardos, M., Luikart, G., Allendorf, F.W., 2015. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity 115(1), 63-72. https://doi.org/10.1038/hdy.2015.17.
    Lazaridis, I., 2018. The evolutionary history of human populations in Europe. Curr. Opin. Genet. Dev. 53, 21-27.
    Nait Saada, J., Kalantzis, G., Shyr, D., Cooper, F., Robinson, M., Gusev, A., Palamara, P.F.J.N.c., 2020. Identity-by-descent detection across 487,409 British samples reveals fine scale population structure and ultra-rare variant associations. Nat. Commun. 11(1), 6130.
    Ni, X.M., Guo, W., Yuan, K., Yang, X., Ma, Z.M., Xu, S.H., Zhang, S.H., 2016. A Probabilistic Method for Estimating the Sharing of Identity by Descent for Populations with Migration. Ieee Acm T. Comput. Bi. 13(2), 281-290. https://doi.org/10.1109/Tcbb.2015.2480074.
    Notohara, M., 1990. The Coalescent and the Genealogical Process in Geographically Structured Population. J. Math. Biol. 29(1), 59-75.
    Palamara, P.F., Lencz, T., Darvasi, A., Pe'er, I., 2012. Length Distributions of Identity by Descent Reveal Fine-Scale Demographic History. Am. J. Hum. Genet. 91(5), 809-822. https://doi.org/10.1016/j.ajhg.2012.08.030.
    Palamara, P.F., Pe'er, I., 2013. Inference of historical migration rates via haplotype sharing. Bioinformatics 29(13), 180-188. https://doi.org/10.1093/bioinformatics/btt239.
    Pemberton, J., 2004. Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol. Evol. 19(12), 613-615. https://doi.org/10.1016/j.tree.2004.09.010.
    Powell, M.J.D., 2009. The BOBYQA algorithm for bound constrained optimization without derivatives. Technical Report DAMTP 2009/NA06.
    Stoneking, M., Delfin, F.J.C.B., 2010. The human genetic history of East Asia: weaving a complex tapestry. Curr. Biol. 20(4), R188-R193.
    Uffink, G.J.M., 1989. Application of kolmogorov's backward equation in random walk simulations of groundwater contaminant transport. Rotterdam [etc.]: Balkema 2283-B 2289.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return