8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 6
Jun.  2024
Turn off MathJax
Article Contents

Aagab is required for zebrafish larval development by regulating neural activity

doi: 10.1016/j.jgg.2024.01.003
Funds:

We are grateful to the members of Dr. Anming Meng laboratory and Dr. Shunji Jia laboratory for suggestions and comments on this work, especially John Xiao He Li (helpful discussion, suggestion on manuscript) and Zheng Jiang (helpful discussion, wild-type Tg(huc:GFP) and Tg(huc:h2b-GCamp6s) fish lines maintenance). Tg(huc:GRAB-NE2m) zebrafish was a gift from the lab of Dr. Jiu-lin Du (CEBSIT, CAS) and Dr. Yulong Li (Peking University). We thank Dr. Weixiang Guo, Dr. Bai-bing Zhang, Dr. Fu-ning Li, Dr. Changmei Zhang, Dr. Likun Yao, and Lei Wang for helpful discussion or technical guidance. Behavioral tracking system DanioVision (Noldus) was offered by the lab of Dr. Lei Tao (Tsinghua University). This work was financially supported by the National Natural Science Foundation of China (#92254302, #32293202, #2019YFA0801400 to S. J., and #31988101 to A. M.).

  • Received Date: 2023-10-12
  • Accepted Date: 2024-01-15
  • Rev Recd Date: 2024-01-13
  • Available Online: 2025-06-06
  • Publish Date: 2024-01-20
  • Clathrin-mediated endocytosis has been implicated in various physiological processes, including nutrient uptake, signal transduction, synaptic vesicle recycling, maintenance of cell polarity, and antigen presentation. Despite prior knowledge of its importance as a key regulator in promoting clathrin-mediated endocytosis, the physiological function of α- and γ-adaptin binding protein (aagab) remains elusive. In this study, we investigate the biological function of aagab during zebrafish development. We establish a loss-of-function mutant of aagab in zebrafish, revealing impaired swimming and early larval mortality. Given the high expression level of aagab in the brain, we probe into its physiological role in the nervous system. aagab mutants display subdued calcium responses and local field potential in the optic tectal neurons, aligning with reduced neurotransmitter release (e.g., norepinephrine) in the tectal neuropil of aagab mutants. Overexpressing aagab mRNA or nervous stimulant treatment in mutants restores neurotransmitter release, calcium responses, swimming ability, and survival. Furthermore, our observations show delayed release of FM 1–43 in AAGAB knockdown differentiated neuroblastoma cells, pointing towards a probable link to defective clathrin-mediated synaptic vesicle recycling. In conclusion, our study underscores the significance of Aagab in neurobiology and suggests its potential impacts on neurological disorders.
  • loading
  • Amaral, E., Guatimosim, S., and Guatimosim, C., 2011. Using the fluorescent styryl dye FM1-43 to visualize synaptic vesicles exocytosis and endocytosis in motor nerve terminals. Methods Mol. Biol. 689, 137-148.
    Charfeddine, C., Ktaifi, C., Laroussi, N., Hammami, H., Jmel, H., Landoulsi, Z., Badri, T., Benmously, R., Bchetnia, M., Boubaker, M.S., et al., 2016. Clinical and molecular investigation of Buschke-Fischer-Brauer in consanguineous Tunisian families. J. Eur. Acad. Dermatol. Venereol. 30, 2122-2130.
    Feng, J., Zhang, C., Lischinsky, J.E., Jing, M., Zhou, J., Wang, H., Zhang, Y., Dong, A., Wu, Z., Wu, H., et al., 2019. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745-761.
    Gaffield, M.A., and Betz, W.J., 2006. Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat. Protoc. 1, 2916-2921.
    Giehl, K.A., Herzinger, T., Wolff, H., Sardy, M., von Braunmuhl, T., Dekeuleneer, V., Sznajer, Y., Tennstedt, D., Boes, P., Rapprich, S., et al., 2016. Eight novel mutations confirm the role of AAGAB in punctate palmoplantar keratoderma type 1 (Buschke-Fischer-Brauer) and show broad phenotypic variability. Acta Derm. Venereol. 96, 468-472.
    Glyvuk, N., Tsytsyura, Y., Geumann, C., D'Hooge, R., Huve, J., Kratzke, M., Baltes, J., Boening, D., Klingauf, J., and Schu, P., 2010. AP-1/sigma1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory. EMBO J. 29, 1318-1330.
    Gong, B., Li, Z., Xiao, W., Li, G., Ding, S., Meng, A., and Jia, S., 2019. Sec14l3 potentiates VEGFR2 signaling to regulate zebrafish vasculogenesis. Nat. Commun. 10, 1606.
    Gulbranson, D.R., Crisman, L., Lee, M., Ouyang, Y., Menasche, B.L., Demmitt, B.A., Wan, C., Nomura, T., Ye, Y., Yu, H., et al., 2019. AAGAB controls AP2 adaptor assembly in clathrin-mediated endocytosis. Dev. Cell 50, 436-446.
    Johnson, K.R., Gagnon, L.H., and Chang, B., 2016. A hypomorphic mutation of the gamma-1 adaptin gene (Ap1g1) causes inner ear, retina, thyroid, and testes abnormalities in mice. Mamm. Genome 27, 200-212.
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310.
    Koenig, J.H., and Ikeda, K., 1989. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844-3860.
    Kononenko, N.L., Puchkov, D., Classen, G.A., Walter, A.M., Pechstein, A., Sawade, L., Kaempf, N., Trimbuch, T., Lorenz, D., Rosenmund, C., et al., 2014. Clathrin/AP-2 mediate synaptic vesicle reformation from endosome-like vacuoles but are not essential for membrane retrieval at central synapses. Neuron 82, 981-988.
    Mignani, L., Facchinello, N., Varinelli, M., Massardi, E., Tiso, N., Ravelli, C., Mitola, S., Schu, P., Monti, E., Finazzi, D., et al., 2023. Deficiency of AP1 complex Ap1g1 in zebrafish model led to perturbation of neurodevelopment, female and male fertility; new insight to understand adaptinopathies. Int. J. Mol. Sci. 24, 7108.
    Montgomery, M.K., Bayliss, J., Keenan, S., Rhost, S., Ting, S.B., and Watt, M.J., 2019. The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue. Faseb j. 33, 13267-13279.
    Owen, D.J., Collins, B.M., and Evans, P.R., 2004. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol. 20, 153-191.
    Pohler, E., Mamai, O., Hirst, J., Zamiri, M., Horn, H., Nomura, T., Irvine, A.D., Moran, B., Wilson, N.J., Smith, F.J., et al., 2012. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. Nat. Genet. 44, 1272-1276.
    Poirier, S., Mayer, G., Murphy, S.R., Garver, W.S., Chang, T.Y., Schu, P., and Seidah, N.G., 2013. The cytosolic adaptor AP-1A is essential for the trafficking and function of Niemann-Pick type C proteins. Traffic 14, 458-469.
    Raj, B., Farrell, J.A., Liu, J., El Kholtei, J., Carte, A.N., Navajas Acedo, J., Du, L.Y., McKenna, A., Relic, D., Leslie, J.M., et al., 2020. Emergence of neuronal diversity during vertebrate brain development. Neuron 108, 1058-1074.
    Setta-Kaffetzi, N., Simpson, M.A., Navarini, A.A., Patel, V.M., Lu, H.C., Allen, M.H., Duckworth, M., Bachelez, H., Burden, A.D., Choon, S.E., et al., 2014. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking. Am. J. Hum. Genet. 94, 790-797.
    Shen, W., Gong, B., Xing, C., Zhang, L., Sun, J., Chen, Y., Yang, C., Yan, L., Chen, L., Yao, L., et al., 2022. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell 185, 4954-4970.
    Shin, J., Nile, A., and Oh, J.W., 2021. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 12, 8259-8278.
    Sudhof, T.C., 2004. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509-547.
    Tian, Y., Datta, I., Yang, R., Wan, C., Wang, B., Crisman, L., He, H., Brautigam, C.A., Li, S., Shen, J., et al., 2023. Oligomer-to-monomer transition underlies the chaperone function of AAGAB in AP1/AP2 assembly. Proc. Natl. Acad. Sci. U. S. A. 120, e2205199120.
    Usmani, M.A., Ahmed, Z.M., Magini, P., Pienkowski, V.M., Rasmussen, K.J., Hernan, R., Rasheed, F., Hussain, M., Shahzad, M., Lanpher, B.C., et al., 2021. De novo and bi-allelic variants in AP1G1 cause neurodevelopmental disorder with developmental delay, intellectual disability, and epilepsy. Am. J. Hum. Genet. 108, 1330-1341.
    Wan, C., Crisman, L., Wang, B., Tian, Y., Wang, S., Yang, R., Datta, I., Nomura, T., Li, S., Yu, H., et al., 2021. AAGAB is an assembly chaperone regulating AP1 and AP2 clathrin adaptors. J. Cell Sci. 134, jcs258587.
    Wang, C., Zhao, D., Shah, S.Z.A., Yang, W., Li, C., and Yang, L., 2017. Proteome analysis of potential synaptic vesicle cycle biomarkers in the cerebrospinal fluid of patients with sporadic Creutzfeldt-Jakob disease. Mol. Neurobiol. 54, 5177-5191.
    Westerfield, M., 1995. The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio), Vol 10, 5th edn (Eugene: Univ. of Oregon Press).
    Wu, C., Zhang, W., Luo, Y., Cheng, C., Wang, X., Jiang, Y., Li, S., Luo, L., and Yang, Y., 2023. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis. J. Genet. Genomics 50, 1004-1013.
    Yao, L., Chen, J., Wu, X., Jia, S., and Meng, A., 2017. Zebrafish cdc6 hypomorphic mutation causes Meier-Gorlin syndrome-like phenotype. Hum. Mol. Genet. 26, 4168-4180.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return