Gaurav, K., Arora, S., Silva, P., Sanchez-Martin, J., Horsnell, R., Gao, L., Brar, G.S., Widrig, V., John Raupp, W., Singh, N., et al., 2022. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 40, 422-431.
|
Levy, A.A., Feldman, M., 2022. Evolution and origin of bread wheat. Plant Cell 34, 2549-2567.
|
Li, B., Choulet, F., Heng, Y., Hao, W., Paux, E., Liu, Z., Yue, W., Jin, W., Feuillet, C., Zhang, X., 2013. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J. 73, 952-965.
|
Li, L.F., Zhang, Z.B., Wang, Z.H., Li, N., Sha, Y., Wang, X.F., Ding, N., Li, Y., Zhao, J., Wu, Y., et al., 2022. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant 15, 488-503.
|
Ling, H.Q., Ma, B., Shi, X., Liu, H., Dong, L., Sun, H., Cao, Y., Gao, Q., Zheng, S., Li, Y., et al., 2018. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557, 424-428.
|
Ling, H.Q., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., Fan, H., Li, D., Dong, L., Tao, Y., et al., 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87-90.
|
Loureiro, I., Escorial, M.C., Chueca, M.C., 2023. Natural hybridization between wheat (Triticum aestivum L.) and its wild relatives Aegilops geniculata Roth and Aegilops triuncialis L. Pest Manag. Sci. 79, 2247-2254.
|
McClintock, B., 1984. The significance of responses of the genome to challenge. 226 792-801.
|
Parisod, C., Alix, K., Just, J., Petit, M., Sarilar, V., Mhiri, C., Ainouche, M., Chalhoub, B., Grandbastien, M.A., 2010. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol. 186, 37-45.
|
Su, H., Liu, Y., Liu, C., Shi, Q., Huang, Y., Han, F., 2019. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell 31, 2035-2051.
|
Wang, K., Wu, Y., Zhang, W., Dawe, R.K., Jiang, J., 2014. Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res. 24, 107-116.
|
Wang, Z., Miao, L., Chen, Y., Peng, H., Ni, Z., Sun, Q., Guo, W., 2023. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J. Genet. Genomics 50, 846-860.
|
Wicker, T., Gundlach, H., Spannagl, M., Uauy, C., Borrill, P., Ramirez-Gonzalez, R.H., De Oliveira, R., International Wheat Genome Sequencing, C., Mayer, K.F.X., Paux, E., et al., 2018. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 19, 103.
|
Zhang, H., Zhu, B., Qi, B., Gou, X., Dong, Y., Xu, C., Zhang, B., Huang, W., Liu, C., Wang, X., et al., 2014. Evolution of the BBAA component of bread wheat during its history at the allohexaploid level. Plant Cell 26, 2761-2776.
|
Zhao, J., Xie, Y., Kong, C., Lu, Z., Jia, H., Ma, Z., Zhang, Y., Cui, D., Ru, Z., Wang, Y., et al., 2023. Centromere repositioning and shifts in wheat evolution. Plant Commun. 4, 100556.
|
Zhou, Y., Bai, S., Li, H., Sun, G., Zhang, D., Ma, F., Zhao, X., Nie, F., Li, J., Chen, L., et al., 2021. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 7, 774-786.
|