8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 5
May  2024
Turn off MathJax
Article Contents

Two ABCI family transporters, OsABCI15 and OsABCI16, are involved in grain-filling in rice

doi: 10.1016/j.jgg.2023.10.007
Funds:

The work was supported by the National Natural Science Foundation of China (32100206 and 32072037), the Research Programs from Jiangsu Government (BE2022336), and the Project of Zhongshan Biological Breeding Laboratory (BM2022008-02). This work was also supported the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Key Scientific Research Project of the Higher Education Institution in Jiangsu Province (No. 20KJA210002).

  • Received Date: 2023-10-07
  • Accepted Date: 2023-10-27
  • Rev Recd Date: 2023-10-27
  • Available Online: 2025-06-06
  • Publish Date: 2023-10-31
  • Seed development is critical for plant reproduction and crop yield, with panicle seed-setting rate, grain-filling, and grain weight being key seed characteristics for yield improvement. However, few genes are known to regulate grain filling. Here, we identify two adenosine triphosphate (ATP)-binding cassette (ABC)I-type transporter genes, OsABCI15 and OsABCI16, involved in rice grain-filling. Both genes are highly expressed in developing seeds, and their proteins are localized to the plasma membrane and cytosol. Interestingly, knockout of OsABCI15 and OsABCI16 results in a significant reduction in seed-setting rate, caused predominantly by the severe empty pericarp phenotype, which differs from the previously reported low seed-setting phenotype resulting from failed pollination. Further analysis indicates that OsABCI15 and OsABCI16 participate in ion homeostasis and likely export ions between filial tissues and maternal tissues during grain filling. Importantly, overexpression of OsABCI15 and OsABCI16 enhances the seed-setting rate and grain yield in transgenic plants and decreases ion accumulation in brown rice. Moreover, the OsABCI15/16 orthologues in maize exhibit a similar role in kernel development, as demonstrated by their disruption in transgenic maize. Therefore, our findings reveal the important roles of two ABC transporters in cereal grain filling, highlighting their value in crop yield improvement.
  • loading
  • Bhati, K.K., Alok, A., Kumar, A., Kaur, J., Tiwari, S., Pandey, A.K., 2016. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J. Exp. Bot. 67, 4379-4389.
    Briat, J.F., Rouached, H., Tissot, N., Gaymard, F., Dubos, C., 2015. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front. Plant Sci. 6, 290.
    Che, J., Yamaji, N., Miyaji, T., Mitani-Ueno, N., Kato, Y., Shen, R.F., Ma, J.F., 2020. Node-localized transporters of phosphorus essential for seed development in rice. Plant Cell Physiol. 61, 1387-1398.
    Chen, J., Zeng, B., Zhang, M., Xie, S., Wang, G., Hauck, A., Lai, J., 2014. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol. 166, 252-264.
    Cho, M., Lee, Z.W., Cho, H.T. 2012. ATP-binding cassette B4, an auxin-efflux transporter, stably associates with the plasma membrane and shows distinctive intracellular trafficking from that of PIN-FORMED proteins. Plant Physiol. 159, 642-654.
    Dan, Z., Liu, P., Huang, W., Zhou, W., Yao, G., Hu, J., Zhu, R., Lu, B., Zhu, Y., 2014. Balance between a higher degree of heterosis and increased reproductive isolation: a strategic design for breeding inter-subspecific hybrid rice. Plos One 9, e93122.
    de Bang, T.C., Husted, S., Laursen, K.H., Persson, D.P., Schjoerring, J.K., 2021. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229, 2446-2469.
    Do, T.H.T., Martinoia, E., Lee, Y., 2018. Functions of ABC transporters in plant growth and development. Curr. Opin. Plant Biol. 41, 32-38.
    Footitt, S., Slocombe, S.P., Larner, V., Kurup, S., Wu, Y., Larson, T., Graham, I., Baker, A., Holdsworth, M., 2002. Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 21, 2912-2922.
    Frelet-Barrand, A., Kolukisaoglu, H.U., Plaza, S., Ruffer, M., Azevedo, L., Hortensteiner, S., Marinova, K., Weder, B., Schulz, B., Klein, M., 2008. Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant Cell Physiol. 49, 557-569.
    Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., et al., 2021. Ca(2+) sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 184, 5391-5404 e5317.
    Gui, J., Liu, C., Shen, J., Li, L., 2014. Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance. Plant Physiol 166, 1463-1478.
    Hansch, R., Mendel, R.R., 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259-266.
    Hansen, T.H., Laursen, K.H., Persson, D.P., Pedas, P., Husted, S., and Schjoerring, J.K., 2009. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis. Plant Methods 5, 12.
    He, Y., Shi, Y., Zhang, X., Xu, X., Wang, H., Li, L., Zhang, Z., Shang, H., Wang, Z., Wu, J.L., 2020. The OsABCI7 transporter interacts with OsHCF222 to stabilize the thylakoid membrane in rice. Plant Physiol. 184, 283-299.
    Higgins, C.F., Linton, K.J., 2004. The ATP switch model for ABC transporters. Nat. Struct. Mol. Biol. 11, 918-926.
    Hjorth, E., Hadfi, K., Zauner, S., Maier, U.G., 2005. Unique genetic compartmentalization of the SUF system in cryptophytes and characterization of a SufD mutant in Arabidopsis thaliana. FEBS Lett 579, 1129-1135.
    Hou, J., Cao, C., Ruan, Y., Deng, Y., Liu, Y., Zhang, K., Tan, L., Zhu, Z., Cai, H., Liu, F., et al., 2019. ESA1 is involved in embryo sac abortion in interspecific hybrid progeny of rice. Plant Physiol. 180, 356-366.
    Huang, C.F., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y., Ma, J.F., 2009. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21, 655-667.
    Hwang, J.U., Song, W.Y., Hong, D., Ko, D., Yamaoka, Y., Jang, S., Yim, S., Lee, E., Khare, D., Kim, K., et al., 2016. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Mol. Plant 9, 338-355.
    Ishimaru, K., Hirose, T., Aoki, N., Takahashi, S., Ono, K., Yamamoto, S., Wu, J., Saji, S., Baba, T., Ugaki, M., Matsumoto, T., Ohsugi, R., 2001. Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.). Plant Cell Physiol. 42, 1181-1185.
    Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., Kapoor, S., Tyagi, A.K., Khurana, J.P., 2007. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 143, 1467-1483.
    Jeon, J.S., Ryoo, N., Hahn, T.R., Walia, H., Nakamura, Y., 2010. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 48, 383-392.
    Jia, H., Ren, H., Gu, M., Zhao, J., Sun, S., Zhang, X., Chen, J., Wu, P., Xu, G., 2011. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol. 156, 1164-1175.
    Kang, J., Park, J., Choi, H., Burla, B., Kretzschmar, T., Lee, Y., Martinoia, E., 2011. Plant ABC Transporters. Arabidopsis Book 9, e0153.
    Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y., 2007. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 50, 207-218.
    Kim, S., Yamaoka, Y., Ono, H., Kim, H., Shim, D., Maeshima, M., Martinoia, E., Cahoon, E.B., Nishida, I., Lee, Y., 2013. AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 110, 773-778.
    Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L.L., Keller, B., 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360-1363.
    Kretzschmar, T., Burla, B., Lee, Y., Martinoia, E., Nagy, R., 2011. Functions of ABC transporters in plants. Essays Biochem. 50, 145-160.
    Krishnan, S., Dayanandan, P., 2003. Structural and histochemical studies on grain-filling in the caryopsis of rice (Oryza sativa L.). J. Biosci. 28, 455-469.
    Kuromori, T., Sugimoto, E., Shinozaki, K., 2011a. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J. 67, 885-894.
    Kuromori, T., Ito, T., Sugimoto, E., Shinozaki, K., 2011b. Arabidopsis mutant of AtABCG26, an ABC transporter gene, is defective in pollen maturation. J. Plant. Physiol. 168, 2001-2005.
    Lee, S.K., Hwang, S.K., Han, M., Eom, J.S., Kang, H.G., Han, Y., Choi, S.B., Cho, M.H., Bhoo, S.H., An, G., et al., 2007. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol. Biol. 65, 531-546.
    Li, D., Huang, Z., Song, S., Xin, Y., Mao, D., Lv, Q., Zhou, M., Tian, D., Tang, M., Wu, Q., et al., 2016. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc. Natl. Acad. Sci. U. S. A. 113, E6026-E6035.
    Li, H., Liu, Y., Qin, H., Lin, X., Tang, D., Wu, Z., Luo, W., Shen, Y., Dong, F., Wang, Y., et al., 2020. A rice chloroplast-localized ABC transporter ARG1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity. New Phytol. 228, 163-178.
    Li, S., Li, W., Huang, B., Cao, X., Zhou, X., Ye, S., Li, C., Gao, F., Zou, T., Xie, K., et al., 2013. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat. Commun. 4, 2793.
    Li, W.X., Zhao, H.J., Pang, W.Q., Cui, H.R., Poirier, Y., Shu, Q.Y., 2014. Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice. Transgenic Res. 23, 585-599.
    Liu, J., Wu, M.W., Liu, C.M., 2022. Cereal Endosperms: Development and Storage Product Accumulation. Annu. Rev. Plant Biol. 73, 255-291.
    Luo, D., Xu, H., Liu, Z., Guo, J., Li, H., Chen, L., Fang, C., Zhang, Q., Bai, M., Yao, N., et al., 2013. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 45, 573-577.
    Ma, B., Zhang, L., He, Z., 2023. Understanding the regulation of cereal grain filling: The way forward. J. Integr. Plant Biol. 65, 526-547.
    Ma, B., Zhang, L., Gao, Q., Wang, J., Li, X., Wang, H., Liu, Y., Lin, H., Liu, J., Wang, X., et al., 2021. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat. Genet. 53, 906-915.
    Matsuda, S., Takano, S., Sato, M., Furukawa, K., Nagasawa, H., Yoshikawa, S., Kasuga, J., Tokuji, Y., Yazaki, K., Nakazono, M., et al., 2016. Rice stomatal closure requires guard cell plasma membrane ATP-Binding cassette transporter RCN1/OsABCG5. Mol. Plant 9, 417-427.
    Nakamura, Y., 2017. Rice starch biotechnology: Rice endosperm as a model of cereal endosperms. Starch - Starke 69.
    Nguyen, V.N.T., Moon, S., Jung, K.H., 2014. Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J. Plant Physiol. 171, 1276-1288.
    Pang, K., Li, Y., Liu, M., Meng, Z., Yu, Y., 2013. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.). Gene 526, 411-428.
    Rea, P.A. 2007. Plant ATP-Binding cassette transporters. Ann. Rev. Plant Biol. 58, 347-375.
    Rodriguez-Leal, D., Lemmon, Z.H., Man, J., Bartlett, M.E., Lippman, Z.B., 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470-480 e478.
    Sanchez-Fernandez, R., Davies, T.G., Coleman, J.O., Rea, P.A. 2001. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 276, 30231-30244.
    Scofield, G.N., Hirose, T., Gaudron, J.A., Furbank, R.T., Upadhyaya, N.M., Ohsugi, R., 2002. Antisense suppression of the rice transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Funct. Plant Biol. 29, 815-826.
    Shi, X., Chen, S., Peng, Y., Wang, Y., Chen, J., Hu, Z., Wang, B., Li, A., Chao, D., Li, Y., Teng, S., 2018. TSC1 enables plastid development under dark conditions, contributing to rice adaptation to transplantation shock. J. Integr. Plant Biol. 60, 112-129.
    Song, W.Y., Yamaki, T., Yamaji, N., Ko, D., Jung, K.H., Fujii-Kashino, M., An, G., Martinoia, E., Lee, Y., Ma, J.F., 2014. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc. Natl. Acad. Sci. U. S. A. 111, 15699-15704.
    Sosso, D., Luo, D., Li, Q.B., Sasse, J., Yang, J., Gendrot, G., Suzuki, M., Koch, K.E., McCarty, D.R., Chourey, P.S., et al., 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat. Genet. 47, 1489-1493.
    Tuncel, A., Kawaguchi, J., Ihara, Y., Matsusaka, H., Nishi, A., Nakamura, T., Kuhara, S., Hirakawa, H., Nakamura, Y., Cakir, B., et al., 2014. The rice endosperm ADP-Glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Plant Cell Physiol. 55, 1169-1183.
    Verrier, P.J., Bird, D., Burla, B., Dassa, E., Forestier, C., Geisler, M., Klein, M., Kolukisaoglu, U., Lee, Y., Martinoia, E., et al., 2008. Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci. 13, 151-159.
    Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., et al., 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40, 1370-1374.
    Wang, L., Lu, Q., Wen, X., Lu, C., 2015a. Enhanced sucrose loading improves rice yield by increasing grain size. Plant Physiol. 169, 2848-2862.
    Wang, T., Li, Y., Song, S., Qiu, M., Zhang, L., Li, C., Dong, H., Li, L., Wang, J., Li, L., 2021. EMBRYO SAC DEVELOPMENT 1 affects seed setting rate in rice by controlling embryo sac development. Plant Physiol. 186, 1060-1073.
    Wang, X., Zhou, W., Lu, Z., Ouyang, Y., O, C.S., Yao, J., 2015b. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice. Plant Sci. 239, 200-208.
    Wu, X., Liu, J., Li, D., Liu, C.M., 2016a. Rice caryopsis development II: Dynamic changes in the endosperm. J. Integr. Plant Biol. 58, 786-798.
    Wu, X., Liu, J., Li, D., Liu, C.M., 2016b. Rice caryopsis development I: Dynamic changes in different cell layers. J. Integr. Plant Biol. 58, 772-785.
    Xiang, X., Zhang, P., Yu, P., Zhang, Y., Yang, Z., Sun, L., Wu, W., Khan, R.M., Abbas, A., Cheng, S., et al., 2019. LSSR1 facilitates seed setting rate by promoting fertilization in rice. Rice 12, 31.
    Xu, X.H., Zhao, H.J., Liu, Q.L., Frank, T., Engel, K.H., An, G., Shu, Q.Y., 2009. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor. Appl. Genet. 119, 75-83.
    Xu, X.M., and Moller, S.G., 2004. AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc. Natl. Acad. Sci. U. S. A. 101, 9143-9148.
    Xu, Y., Yang, J., Wang, Y., Wang, J., Yu, Y., Long, Y., Wang, Y., Zhang, H., Ren, Y., Chen, J., et al., 2017. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. Plos Genet. 13, e1006906.
    Yamaji, N., Ma, J.F., 2007. Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol. 143, 1306-1313.
    Yamaji, N., Takemoto, Y., Miyaji, T., Mitani-Ueno, N., Yoshida, K.T., Ma, J.F., 2017. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541, 92-95.
    Yang, J., Zhang, J., 2006. Grain filling of cereals under soil drying. New Phytol. 169, 223-236.
    Yang, J., Luo, D., Yang, B., Frommer, W.B., Eom, J.S. 2018. SWEET11 and 15 as key players in seed filling in rice. New Phytol. 218, 604-615.
    Yang, J., Zhao, X., Cheng, K., Du, H., Ouyang, Y., Chen, J., Qiu, S., Huang, J., Jiang, Y., Jiang, L., et al., 2012. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337, 1336-1340.
    Yoneyama, T., Ishikawa, S., Fujimaki, S., 2015. Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain Filling: metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Int. J. Mol. Sci. 16, 19111-19129.
    Zafar, S.A., Patil, S.B., Uzair, M., Fang, J.J., Zhao, J.F., Guo, T.T., Yuan, S.J., Luo, Q., Shi, J.X., Schreiber, L., et al., 2020. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine beta-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytol. 225, 356-375.
    Zeng, X., Tang, R., Guo, H., Ke, S., Teng, B., Hung, Y.H., Xu, Z., Xie, X.M., Hsieh, T.F., Zhang, X.Q., 2017. A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. Plant Mol. Biol. 94, 137-148.
    Zhan, P., Ma, S., Xiao, Z., Li, F., Wei, X., Lin, S., Wang, X., Ji, Z., Fu, Y., Pan, J., et al., 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. J. Genet. Genomics 49, 405-413.
    Zhang, F., Sun, Y., Pei, W., Jain, A., Sun, R., Cao, Y., Wu, X., Jiang, T., Zhang, L., Fan, X., et al., 2015. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Plant J. 82, 556-569.
    Zhao, G., Shi, J., Liang, W., Xue, F., Luo, Q., Zhu, L., Qu, G., Chen, M., Schreiber, L., Zhang, D., 2015. Two ATP Binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction. Plant Physiol. 169, 2064-2079.
    Zhou, S., Wang, Y., Li, W., Zhao, Z., Ren, Y., Wang, Y., Gu, S., Lin, Q., Wang, D., Jiang, L., et al., 2011. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23, 111-129.
    Zhou, X., Zhao, Y., Ni, P., Ni, Z., Sun, Q., Zong, Y., 2023. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics S1673-8527(23)00191-1. doi: 10.1016/j.jgg.2023.09.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return