5.9
CiteScore
5.9
Impact Factor
Turn off MathJax
Article Contents

ORPA: a fast and efficient phylogenetic analysis method for constructing genomewide alignments of organelle genomes

doi: 10.1016/j.jgg.2023.08.006
Funds:

We sincerely thank the editors and reviewers for their valuable suggestions and comments on this study. This work was supported by the National Key R&D Program of China (2018YFA0903200), and Science Technology and Innovation Commission of Shenzhen Municipality of China (ZDSYS 20200811142605017). It was also supported by Innovation Program of Chinese Academy of Agricultural Sciences and the Elite Young Scientists Program of CAAS.

  • Received Date: 2023-05-29
  • Rev Recd Date: 2023-08-19
  • Available Online: 2023-08-25
  • Creating a multi-gene alignment matrix for phylogenetic analysis using organelle genomes involves aligning single-gene datasets manually, a process that can be time-consuming and prone to errors. The HomBlocks pipeline has been created to eliminate the inaccuracies arising from manual operations. The processing of a large number of sequences, however, remains a time- consuming task. To conquer this challenge, we develop a speedy and efficient method called Organelle Genomes for Phylogenetic Analysis (ORPA). ORPA can quickly generate multiple sequence alignments for whole-genome comparisons by parsing the result files of NCBI BLAST, completing the task in just one minute. With increasing data volume, the efficiency of ORPA is even more pronounced, over 300 times faster than HomBlocks in aligning 60 high-plant chloroplast genomes. The phylogenetic tree outputs from ORPA are equivalent to HomBlocks, indicating its outstanding efficiency. Due to its speed and accuracy, ORPA can identify species- level evolutionary conflicts, providing valuable insights into evolutionary cognition.

  • loading
  • Bi, G., Mao, Y., Xing, Q., Cao, M., 2018. HomBlocks:a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics 110, 18-22.
    Capella-Gutiérrez, S., Silla-Martínez, J.M., Gabaldón, T., 2009. trimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.
    Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552.
    Contreras-Moreira, B., Vinuesa, P., 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696-7701.
    Criscuolo, A., Gribaldo, S., 2010. BMGE (Block Mapping and Gathering with Entropy):a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210.
    Darling, A.C.E., Mau, B., Blattner, F.R., Perna, N.T., 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394-1403.
    Dress, A.W., Flamm, C., Fritzsch, G., Grunewald, S., Kruspe, M., Prohaska, S.J., Stadler, P.F., 2008. Noisy:identification of problematic columns in multiple sequence alignments. Algorithms Mol. Biol. 3, 7.
    Gibb, G.C., Condamine, F.L., Kuch, M., Enk, J., Moraes-Barros, N., Superina, M., Poinar, H.N., Delsuc, F., 2016. Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living Xenarthrans. Mol. Biol. Evol. 33, 621-642.
    Hong-Wa, C., Dupin, J., Frasier, C., Schatz, G., Besnard, G., 2023. Systematics and biogeography of Oleaceae subtribe Schreberinae, with recircumscription and revision of its Malagasy members. Bot. J. Linn. Soc. 4, 476-509.
    Li, H.T., Luo, Y., Gan, L., Ma, P.F., Gao, L.M., Yang, J.B., Cai, J., Gitzendanner, M.A., Fritsch, P.W., Zhang, T., et al., 2021. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 19, 1-13.
    Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B., Gitzendanner, M.A., Fritsch, P.W., Cai, J., Luo, Y., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470.
    McGinnis, S., Madden, T.L., 2004. BLAST:at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20-W25.
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.
    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542.
    Shen, W., Le, S., Li, Y., Hu, F., 2016. SeqKit:A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One 11, e0163962.
    Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.
    The Angiosperm Phylogeny, G., 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV. Bot. J. Linn. Soc. 181, 1-20.
    Wallander, E., Albert, V.A., 2000. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am. J. Bot. 87, 1827-1841.
    Xia, Z., Wen, J., Gao, Z., 2019. Does the Enigmatic Wightia Belong to Paulowniaceae (Lamiales)? Front. Plant Sci. 10, 528.
    Zhang, D., Li, K., Gao, J., Liu, Y., Gao, L.-Z., 2016. The Complete Plastid Genome Sequence of the Wild Rice Zizania latifolia and Comparative Chloroplast Genomics of the Rice Tribe Oryzeae, Poaceae. Front. Ecol. Evol. 4, 88.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (140) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return