Arbab, M., Shen, M.W., Mok, B., Wilson, C., Matuszek, Z., Cassa, C.A., Liu, D.R., 2020. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463-480.
|
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A T to G C in genomic DNA without DNA cleavage. Nature 551, 464-471.
|
Jiang, G., Wang, J., Zhao, D., Chen, X., Pu, S., Zhang, C., Li, J., Li, Y., Yang, J., Li, S., et al., 2021. Molecular mechanism of the cytosine CRISPR base editing process and the roles of translesion DNA polymerases. ACS Synth. Biol. 10, 3353-3358.
|
Kim, H.K., Min, S., Song, M., Jung, S., Choi, J.W., Kim, Y., Lee, S., Yoon, S., Kim, H.H., 2018. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239-241.
|
Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843-846.
|
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
|
Li, B., Li, Y.Q., Zhao, D., Yang, J., Ma, Y.H., Bi, C.H., Zhang, X.L., 2022a. Sequence motifs and prediction model of GBE editing outcomes based on target library analysis and machine learning. J. Genet. Genomics 49, 254-257.
|
Li, G., Li, X., Zhuang, S., Wang, L., Zhu, Y., Chen, Y., Sun, W., Wu, Z., Zhou, Z., Chen, J., et al., 2022b. Gene editing and its applications in biomedicine. Sci. China Life Sci. 65, 660-700.
|
Maalouf, M., 2011. Logistic regression in data analysis:an overview. Int. J. Data Anal. Tech. Strat. 3, 281-299.
|
Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K.Y., et al., 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729.
|
Sakamoto, A.N., Kaya, H., Endo, M., 2018. Deletion of TLS polymerases promotes homologous recombination in Arabidopsis. Plant Signal. Behav. 13, e1483673.
|
Song, M., Kim, H.K., Lee, S., Kim, Y., Seo, S.Y., Park, J., Choi, J.W., Jang, H., Shin, J.H., Min, S., et al., 2020. Sequence-specific prediction of the efficiencies of adenine and cytosine base. Nat. Biotechnol. 38, 1037-1043.
|
Uriarte-Arcia, A.V., Lopez-Yanez, I., Yanez-Marquez, C., 2014. One-hot vector hybrid associative classifier for medical data classification. PLoS ONE 9, e95715.
|
Xu, P., Liu, Z., Liu, Y., Ma, H., Xu, Y., Bao, Y., Zhu, S., Cao, Z., Wu, Z., Zhou, Z., et al., 2021. Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nat. Biotechnol. 39, 1403-1413.
|
Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M.A., Rosser, S.J., Bi, C.H., Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35-40.
|