5.9
CiteScore
5.9
Impact Factor
Turn off MathJax
Article Contents

Genetic interrogation of phenotypic plasticity informs genome-enabled breeding in cotton

doi: 10.1016/j.jgg.2023.05.004
Funds:  This study was supported by the National Key Research and Development Program of China (2021YFF1000900) and the National Natural Science Foundation of China (32170645). This study was also supported by the Foundation of Hubei Hongshan Laboratory (2021hszd014). We thank the high-performance computing platform at National Key Laboratory of Crop Genetic Improvement in Huazhong Agricultural University.
  • Received Date: 2023-02-20
  • Accepted Date: 2023-05-04
  • Rev Recd Date: 2023-04-19
  • Available Online: 2023-05-19
  • Phenotypic plasticity, or the ability to adapt to and thrive in changing climates and variable environments, is essential for developmental programs in plants. Despite its importance, the genetic underpinnings of phenotypic plasticity for key agronomic traits remain poorly understood in many crops. In this study, we aimed to fill this gap by using genome-wide association study (GWAS) to identify genetic variations associated with phenotypic plasticity in upland cotton (Gossypium hirsutum L.). We identified 73 additive QTLs, 32 dominant QTLs and 6799 epistatic QTLs associated with 20 traits. We also identified 117 additive QTLs, 28 dominant QTLs and 4691 epistatic QTLs associated with phenotypic plasticity in 19 traits. Our findings reveal new genetic factors, including additive, dominant, and epistatic QTLs, that are linked to phenotypic plasticity and agronomic traits. Meanwhile, we find that the genetic factors controlling the mean phenotype and phenotypic plasticity are largely independent in upland cotton, indicating the potential for simultaneous improvement. Additionally, we envision a genomic design strategy by utilizing the identified QTLs to facilitate cotton breeding. Taken together, our study provides new insights into the genetic basis of phenotypic plasticity in cotton, which should be valuable for future breeding.
  • loading
  • [1]
    Agren, J., Oakley, C.G., Lundemo, S.,Schemske, D.W., 2017. Adaptive divergence in flowering time among natural populations of arabidopsis thaliana: Estimates of selection and qtl mapping. Evolution. 71, 550-564.
    [2]
    Alexandratos, N.,Bruinsma, J., 2012. World agriculture towards 2030/2050: The 2012 revision.
    [3]
    Arnold, P., Kruuk, L.,Nicotra, A., 2019. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol. 222:1235-1241.
    [4]
    Bates, D., Machler, M., Bolker, B.,Walker, S., 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67, 1 - 48.
    [5]
    Browning, B.L., Zhou, Y., Browning, S.R., 2018. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet. 103, 338-348.
    [6]
    Carlborg, O, Haley, C.S., 2004. Epistasis: Too often neglected in complex trait studies? Nat Rev Genet. 5, 618-625.
    [7]
    Chen, H., Patterson, N., Reich, D., 2010. Population differentiation as a test for selective sweeps. Genome Res. 20, 393-402.
    [8]
    Chen, S., Zhou, Y., Chen, Y.,Gu, J., 2018. Fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics. 34, i884-i890.
    [9]
    Chen, Z.J., Scheffler, B.E., Dennis, E., Triplett, B.A., Zhang, T., Guo, W., Chen, X., Stelly, D.M., Rabinowicz, P.D., Town, C.D., et al., 2007. Toward sequencing cotton (gossypium) genomes. Plant Physiol. 145, 1303-1310.
    [10]
    Cooper, M., Gho, C., Leafgren, R., Tang, T.,Messina, C., 2014. Breeding drought-tolerant maize hybrids for the us corn-belt: Discovery to product. J Exp Bot. 65, 6191-6204.
    [11]
    Crossa, J., Perez-Rodriguez, P., Cuevas, J., Montesinos-Lopez, O., Jarquin, D., de los Campos, G., Burgueno, J., Gonzalez-Camacho, J.M., Perez-Elizalde, S., Beyene, Y., et al., 2017. Genomic selection in plant breeding: Methods, models, and perspectives. Trends Plant Sci. 22, 961-975.
    [12]
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al., 2011. The variant call format and vcftools. Bioinformatics. 27, 2156-2158.
    [13]
    Des Marais, D., Hernandez, K.,Juenger, T., 2013. Genotype-by-environment interaction and plasticity: Exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst. 44, 5-29.
    [14]
    Desta, Z.A.,Ortiz, R., 2014. Genomic selection: Genome-wide prediction in plant improvement. Trends Plant Sci. 19, 592-601.
    [15]
    Doust, A.N., Lukens, L., Olsen, K.M., Mauro-Herrera, M., Meyer, A.,Rogers, K., 2014. Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proc Natl Acad Sci U S A. 111, 6178-6183.
    [16]
    Ehrlich, P.,Harte, J., 2015. Opinion: To feed the world in 2050 will require a global revolution. Proc Natl Acad Sci U S A. 112, 14743-14744.
    [17]
    Endelman, J., 2011. Ridge regression and other kernels for genomic selection with r package rrblup. Plant Genome. 4, 250-255.
    [18]
    Fang, L., Wang, Q., Hu, Y., Jia, Y., Chen, J., Liu, B., Zhang, Z., Guan, X., Chen, S., Zhou, B., et al., 2017. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet. 49, 1089-1098.
    [19]
    Finlay, K.W.,Wilkinson, G.N., 1963. The analysis of adaptation in a plant-breeding programme. Crop Pasture Sci. 14, 742-754.
    [20]
    Flint, J., DeFries, J.C.,Henderson, N.D., 2004. Little epistasis for anxiety-related measures in the defries strains of laboratory mice. Mamm Genome. 15, 77-82.
    [21]
    Freed, D., Aldana, R., Weber, J.A.,Edwards, J.S., 2017. The sentieon genomics tools – a fast and accurate solution to variant calling from next-generation sequence data. bioRxiv.
    [22]
    Fusco, G.,Minelli, A., 2010. Phenotypic plasticity in development and evolution: Facts and concepts. Introduction. Philos Trans R Soc Lond B Biol Sci. 365, 547-556.
    [23]
    Gupta, A., Rico-Medina, A.,Cano-Delgado, A.I., 2020. The physiology of plant responses to drought. Science. 368, 266-269.
    [24]
    He, S., Sun, G., Geng, X., Gong, W., Dai, P., Jia, Y., Shi, W., Pan, Z., Wang, J., Wang, L., et al., 2021. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet. 53, 916-924.
    [25]
    Heffner, E., Jannink, J.-L., Iwata, H., Souza, E.,Sorrells, M., 2011. Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci. 51, 2597.
    [26]
    Hoh, J.,Ott, J., 2003. Mathematical multi-locus approaches to localizing complex human trait genes. Nat Rev Genet. 4, 701-709.
    [27]
    Huang, M., Cabrera, A., Hoffstetter, A., Griffey, C., Van Sanford, D., Costa, J., McKendry, A., Chao, S.,Sneller, C., 2016. Genomic selection for wheat traits and trait stability. Theor Appl Genet. 129, 1697-1710.
    [28]
    Huang, X., Huang, S., Han, B.,Li, J., 2022. The integrated genomics of crop domestication and breeding. Cell. 185, 2828-2839.
    [29]
    Jin, M., Liu, H., Liu, X., Guo, T., Guo, J., Yin, Y., Ji, Y., Li, Z., Zhang, J., Wang, X., et al., 2023. Complex genetic architecture underlying the plasticity of maize agronomic traits. Plant Commun., 100473.
    [30]
    Kikuchi, S., Bheemanahalli, R., Jagadish, K.S.V., Kumagai, E., Masuya, Y., Kuroda, E., Raghavan, C., Dingkuhn, M., Abe, A.,Shimono, H., 2017. Genome-wide association mapping for phenotypic plasticity in rice. Plant Cell Environ. 40, 1565-1575.
    [31]
    Kumagai, E., Homma, K., Kuroda, E.,Shimono, H., 2016. Finlay-wilkinson's regression coefficient as a pre-screening criterion for yield responsiveness to elevated atmospheric co(2) concentration in crops. Physiol Plant. 158, 312-317.
    [32]
    Kusmec, A., de Leon, N.,Schnable, P.S., 2018. Harnessing phenotypic plasticity to improve maize yields. Front Plant Sci. 9, 1377.
    [33]
    Kusmec, A., Srinivasan, S., Nettleton, D.,Schnable, P.S., 2017. Distinct genetic architectures for phenotype means and plasticities in zea mays. Nat Plants. 3, 715-723.
    [34]
    Li, C., Wu, X., Li, Y., Shi, Y., Song, Y., Zhang, D., Li, Y.,Wang, T., 2019. Genetic architecture of phenotypic means and plasticities of kernel size and weight in maize. Theor Appl Genet. 132, 3309-3320.
    [35]
    Li, H.,Durbin, R., 2010. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 26, 589-595.
    [36]
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,Durbin, R., 2009. The sequence alignment/map format and samtools. Bioinformatics. 25, 2078-2079.
    [37]
    Li, J., Yuan, D., Wang, P., Wang, Q., Sun, M., Liu, Z., Si, H., Xu, Z., Ma, Y., Zhang, B., et al., 2021a. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biol. 22, 119.
    [38]
    Li, L., Zhang, C., Huang, J., Liu, Q., Wei, H., Wang, H., Liu, G., Gu, L.,Yu, S., 2021b. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (gossypium hirsutum l.). Plant Biotechnol J. 19, 109-123.
    [39]
    Li, M.X., Yeung, J.M., Cherny, S.S.,Sham, P.C., 2012. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 131, 747-756.
    [40]
    Li, Z., Wang, P., You, C., Yu, J., Zhang, X., Yan, F., Ye, Z., Shen, C., Li, B., Guo, K., et al., 2020. Combined gwas and eqtl analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. New Phytol. 226, 1738-1752.
    [41]
    Lian, L.,de Los Campos, G., 2015. Fw: An r package for finlay-wilkinson regression that incorporates genomic/pedigree information and covariance structures between environments. G3 (Bethesda). 6, 589-597.
    [42]
    Liu, H.J., Wang, X., Xiao, Y., Luo, J., Qiao, F., Yang, W., Zhang, R., Meng, Y., Sun, J., Yan, S., et al., 2020. Cubic: An atlas of genetic architecture promises directed maize improvement. Genome Biol. 21, 20.
    [43]
    Liu, N., Du, Y., Warburton, M.L., Xiao, Y.,Yan, J., 2021. Phenotypic plasticity contributes to maize adaptation and heterosis. Mol Biol Evol. 38, 1262-1275.
    [44]
    Ma, X., Wang, Z., Li, W., Zhang, Y., Zhou, X., Liu, Y., Ren, Z., Pei, X., Zhou, K., Zhang, W., et al., 2019. Resequencing core accessions of a pedigree identifies derivation of genomic segments and key agronomic trait loci during cotton improvement. Plant Biotechnol J. 17, 762-775.
    [45]
    Ma, Z., He, S., Wang, X., Sun, J., Zhang, Y., Zhang, G., Wu, L., Li, Z., Liu, Z., Sun, G., et al., 2018. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 50, 803-813.
    [46]
    Ma, Z., Zhang, Y., Wu, L., Zhang, G., Sun, Z., Li, Z., Jiang, Y., Ke, H., Chen, B., Liu, Z., et al., 2021. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet. 53, 1385-1391.
    [47]
    Newell, M.A.,Jannink, J.L., 2014. Genomic selection in plant breeding. Methods Mol Biol. 1145, 117-130.
    [48]
    Perez, P.,de los Campos, G., 2014. Genome-wide regression and prediction with the bglr statistical package. Genetics. 198, 483-495.
    [49]
    Peripato, A.C., De Brito, R.A., Vaughn, T.T., Pletscher, L.S., Matioli, S.R.,Cheverud, J.M., 2002. Quantitative trait loci for maternal performance for offspring survival in mice. Genetics. 162, 1341-1353.
    [50]
    Phillips, P.C., 2008. Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 9, 855-867.
    [51]
    Pigliucci, M., 2005. Evolution of phenotypic plasticity: Where are we going now? Trends Ecol. Evol. 20, 481-486.
    [52]
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., et al., 2007. Plink: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 81, 559-575.
    [53]
    Resende, M.F.R., Jr., Munoz, P., Acosta, J.J., Peter, G.F., Davis, J.M., Grattapaglia, D., Resende, M.D.V.,Kirst, M., 2012. Accelerating the domestication of trees using genomic selection: Accuracy of prediction models across ages and environments. New Phytol. 193, 617-624.
    [54]
    Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk, K., Kelly, C., Kim, S., et al., 2022. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20-D26.
    [55]
    Scheiner, S.M., 1993. Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst. 24, 35-68.
    [56]
    Scheiner, S.M.,Lyman, R.F., 1989. The genetics of phenotypic plasticity i. Heritability. J Evol Biol. 2(2):95 - 107 .
    [57]
    Shimomura, K., Low-Zeddies, S.S., King, D.P., Steeves, T.D., Whiteley, A., Kushla, J., Zemenides, P.D., Lin, A., Vitaterna, M.H., Churchill, G.A., et al., 2001. Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome Res. 11, 959-980.
    [58]
    Smith Richards, B.K., Belton, B.N., Poole, A.C., Mancuso, J.J., Churchill, G.A., Li, R., Volaufova, J., Zuberi, A.,York, B., 2002. Qtl analysis of self-selected macronutrient diet intake: Fat, carbohydrate, and total kilocalories. Physiol Genomics. 11, 205-217.
    [59]
    Spindel, J.E., Begum, H., Akdemir, D., Collard, B., Redona, E., Jannink, J.L.,McCouch, S., 2016. Genome-wide prediction models that incorporate de novo gwas are a powerful new tool for tropical rice improvement. Heredity. 116, 395-408.
    [60]
    Su, G., Madsen, P., Lund, M.S., Sorensen, D., Korsgaard, I.R.,Jensen, J., 2006. Bayesian analysis of the linear reaction norm model with unknown covariates. J Anim Sci. 84, 1651-1657.
    [61]
    Su, J., Li, L., Pang, C., Wei, H., Wang, C., Song, M., Wang, H., Zhao, S., Zhang, C., Mao, G., et al., 2016. Two genomic regions associated with fiber quality traits in chinese upland cotton under apparent breeding selection. Sci Rep. 6, 38496.
    [62]
    Sultan, S.E. 1987. Evolutionary implications of phenotypic plasticity in plants. Evol. Biol. 21. 127-178.
    [63]
    Sultan, S.E., 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5 12, 537-542.
    [64]
    Sun, Z., Wang, X., Liu, Z., Gu, Q., Zhang, Y., Li, Z., Ke, H., Yang, J., Wu, J., Wu, L., et al., 2017. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in gossypium hirsutum l. Plant Biotechnol J. 15, 982-996.
    [65]
    Tong, H., Kuken, A.,Nikoloski, Z., 2020. Integrating molecular markers into metabolic models improves genomic selection for arabidopsis growth. Nat Commun. 11, 2410.
    [66]
    von Korff, M., Leon, J.,Pillen, K., 2010. Detection of epistatic interactions between exotic alleles introgressed from wild barley (h. Vulgare ssp. Spontaneum). Theor Appl Genet. 121, 1455-1464.
    [67]
    Wang, K., Li, M.,Hakonarson, H., 2010. Annovar: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
    [68]
    Wang, M., Tu, L., Lin, M., Lin, Z., Wang, P., Yang, Q., Ye, Z., Shen, C., Li, J., Zhang, L., et al., 2017. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet. 49, 579-587.
    [69]
    Wang, M., Tu, L., Yuan, D., Zhu, D., Shen, C., Li, J., Liu, F., Pei, L., Wang, P., Zhao, G., et al., 2019. Reference genome sequences of two cultivated allotetraploid cottons, gossypium hirsutum and gossypium barbadense. Nat Genet. 51, 224-229.
    [70]
    Wang, P., He, S., Sun, G., Pan, Z., Sun, J., Geng, X., Peng, Z., Gong, W., Wang, L., Pang, B., et al., 2021. Favorable pleiotropic loci for fiber yield and quality in upland cotton (gossypium hirsutum). Sci Rep. 11, 15935.
    [71]
    Wang, Y., Mette, M.F., Miedaner, T., Wilde, P., Reif, J.C.,Zhao, Y., 2015. First insights into the genotype-phenotype map of phenotypic stability in rye. J Exp Bot. 66, 3275-3284.
    [72]
    Wei, X., Qiu, J., Yong, K., Fan, J., Zhang, Q., Hua, H., Liu, J., Wang, Q., Olsen, K.M., Han, B., et al., 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat Genet. 53, 243-253.
    [73]
    Wu, R., 1998. The detection of plasticity genes in heterogeneous environments. Evolution. 52, 967-977.
    [74]
    Xiao, Y., Jiang, S., Cheng, Q., Wang, X., Yan, J., Zhang, R., Qiao, F., Ma, C., Luo, J., Li, W., et al., 2021. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 22, 148.
    [75]
    Yan, J., Xu, Y., Cheng, Q., Jiang, S., Wang, Q., Xiao, Y., Ma, C., Yan, J.,Wang, X., 2021. Lightgbm: Accelerated genomically designed crop breeding through ensemble learning. Genome Biol. 22, 271.
    [76]
    Zhang, C., Yang, Z., Tang, D., Zhu, Y., Wang, P., Li, D., Zhu, G., Xiong, X., Shang, Y., Li, C., et al., 2021a. Genome design of hybrid potato. Cell. 184, 3873-3883.e3812.
    [77]
    Zhang, T., He, Y., DePauw, R., Jin, Z., Garvin, D., Yue, X., Anderson, W., Li, T., Dong, X., Zhang, T., et al., 2022. Climate change may outpace current wheat breeding yield improvements in north america. Nat Commun. 13, 5591.
    [78]
    Zhang, Y., Chen, B., Sun, Z., Liu, Z., Cui, Y., Ke, H., Wang, Z., Wu, L., Zhang, G., Wang, G., et al., 2021b. A large-scale genomic association analysis identifies a fragment in dt11 chromosome conferring cotton verticillium wilt resistance. Plant Biotechnol J. 19, 2126-2138.
    [79]
    Zhou, X.,Stephens, M., 2012. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 44, 821-824.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (140) PDF downloads (15) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return