[1] |
Albertos, P., Romero-Puertas, M.C., Tatematsu, K., Mateos, I., Sanchez-Vicente, I., Nambara, E.,Lorenzo, O., 2015. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat. Commun. 6, 8669.
|
[2] |
Ayyar, P.V., 2016. Uncovering the role of S-nitrosylation in jasmonic acid signalling during the plant immune response. PhD thesis Edinburgh: IMPS, The University of Edinburgh.
|
[3] |
Bechtold, N.,Pelletier, G., 1998. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259-266.
|
[4] |
Campos, F.V., Oliveira, J.A., Pereira, M.G., Farnese, F.S., 2019. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta 250, 1475-1489.
|
[5] |
Cao, M., Chen, R., Li, P., Yu, Y., Zheng, R., Ge, D., Zheng, W., Wang, X., Gu, Y., Gelova, Z., et al., 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240-243.
|
[6] |
Chaisupa, P., Rahman, M. M., Hildreth, S. B., Moseley, S., Gatling, C., Helm, R. F., Wright, R.C., 2023. Genetically encoded, noise-tolerant, auxin biosensors in yeast facilitate metabolic engineering and directed evolution. bioRxiv, https://doi.org/ https://doi.org/10.1101/2023.03.21.533585
|
[7] |
Chen, L., Sun, S., Song, C.P., Zhou, J.M., Li, J., Zuo, J., 2022. Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis. J. Genet. Genomics 49, 756-765.
|
[8] |
Chen, L., Wu, R., Feng, J., Feng, T., Wang, C., Hu, J., Zhan, N., Li, Y., Ma, X., Ren, B., et al., 2020. Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants. Dev. Cell 53, 444-457.
|
[9] |
Chen, R.Q., Sun, S.L., Wang, C., Li, Y.S., Liang, Y., An, F.Y., Li, C., Dong, H.L., Yang, X.H., Zhang, J., et al., 2009. The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res. 19, 1377-1387.
|
[10] |
Cubuk, J., Alston, J.J., Incicco, J.J., Holehouse, A.S., Hall, K.B., Stuchell-Brereton, M.D., Soranno, A., 2023. The disordered N-terminal tail of SARS CoV-2 Nucleocapsid protein forms a dynamic complex with RNA. bioRxiv, https://doi.org/ https://doi.org/10.1101/2023.02.10.527914.
|
[11] |
Dharmasiri, N., Dharmasiri, S., Estelle, M., 2005. The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.
|
[12] |
Ding, Z.,Friml, J., 2010. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc. Natl. Acad. Sci. U. S. A. 107, 12046-12051.
|
[13] |
Emenecker, R.J., Griffith, D., Holehouse, A.S., 2021. Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure. Biophys. J. 120, 4312-4319.
|
[14] |
Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A., Loake, G.J., 2005. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. U. S. A. 102, 8054-8059.
|
[15] |
Feng, J., Chen, L., Zuo, J., 2019. Protein S-nitrosylation in plants: Current progresses and challenges. J. Integr. Plant Biol. 61, 1206-1223.
|
[16] |
Feng, J., Wang, C., Chen, Q., Chen, H., Ren, B., Li, X., Zuo, J., 2013. S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nat. Commun. 4, 1529.
|
[17] |
Fernandez-Marcos, M., Sanz, L., Lewis, D.R., Muday, G.K.,Lorenzo, O., 2011. Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED (PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. U. S. A. 108, 18506-18511.
|
[18] |
Fernando, V., Zheng, X., Walia, Y., Sharma, V., Letson, J.,Furuta, S., 2019. S-nitrosylation: an emerging paradigm of redox signaling. Antioxidants 8, 404.
|
[19] |
Figueiredo, M.R.A., Strader, L.C., 2022. Intrinsic and extrinsic regulators of Aux/IAA protein degradation dynamics. Trends Biochem. Sci. 47, 865-874.
|
[20] |
Gietz, R.D.,Woods, R.A., 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87-96.
|
[21] |
Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H., Estelle, M., 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13, 1678-1691.
|
[22] |
Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., Estelle, M., 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271-276.
|
[23] |
Gupta, K.J., Kaladhar, V.C., Fitzpatrick, T.B., Fernie, A.R., Moller, I.M., Loake, G.J., 2022. Nitric oxide regulation of plant metabolism. Mol. Plant 15, 228-242.
|
[24] |
Gupta, K.J., Kolbert, Z., Durner, J., Lindermayr, C., Corpas, F.J., Brouquisse, R., Barroso, J.B., Umbreen, S., Palma, J.M., Hancock, J.T., et al., 2020. Regulating the regulator: nitric oxide control of post-translational modifications. New Phytol. 227, 1319-1325.
|
[25] |
Havens, K.A., Guseman, J.M., Jang, S.S., Pierre-Jerome, E., Bolten, N., Klavins, E., Nemhauser, J.L., 2012. A synthetic approach reveals extensive tunability of auxin signaling. Plant Physiol. 160, 135-142.
|
[26] |
He, Y., Tang, R.H., Hao, Y., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F., et al., 2004. Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968-1971.
|
[27] |
Hu, J., Yang, H., Mu, J., Lu, T., Peng, J., Deng, X., Kong, Z., Bao, S., Cao, X., Zuo, J., 2017. Nitric oxide regulates protein methylation during stress responses in plants. Mol. Cell 67, 702-710.
|
[28] |
Humphrey, W., Dalke, A., Schulten, K., 1996. Vmd: Visual molecular dynamics. J. Mol. Graph. 14, 33-38.
|
[29] |
Iglesiasa, M.J., Terrile, M.C., Correa-Aragunde, N., Colman, S.L., Izquierdo-Alvarez, A., Fiol, D.F., Paris, R., Sanchez-Lopez, N., Marina, A., Villalobos, L.I.A.C., et al., 2018. Regulation of SCFTIR1/AFBs E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol. 18, 200-210.
|
[30] |
Jing, H., Korasick, D.A., Emenecker, R.J., Morffy, N., Wilkinson, E.G., Powers, S.K., Strader, L.C., 2022. Regulation of auxin response factor condensation and nucleo-cytoplasmic partitioning. Nat. Commun. 13, 4015.
|
[31] |
Jing, H., Strader, L.C., 2018. Structural biology of auxin signal transduction. In Plant Structural Biology: Hormonal Regulations J Hejatko, ed, 49-66.
|
[32] |
Jing, H., Yang, X., Zhang, J., Liu, X., Zheng, H., Dong, G., Nian, J., Feng, J., Xia, B., Qian, Q., et al., 2015. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat. Commun. 6, 7395.
|
[33] |
Joseph, J.A., Reinhardt, A., Aguirre, A., Chew, P.Y., Russell, K.O., Espinosa, J.R., Garaizar, A., Collepardo-Guevara, R., 2022. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput. Sci. 1, 732-743.
|
[34] |
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al., 2021. Highly accurate protein structure prediction with AlphFold. Nature 596, 583-589.
|
[35] |
Kohli, S.K., Khanna, K., Bhardwaj, R., Corpas, F.J., Ahmad, P., 2022. Nitric oxide, salicylic acid and oxidative stress: Is it a perfect equilateral triangle? Plant Physiol. Biochem. 184, 56-64.
|
[36] |
Kolbert, Z., 2019. Strigolactone-nitric oxide interplay in plants: The story has just begun. Physiol. Plant 165, 487-497.
|
[37] |
Kolbert, Z., Barroso, J.B., Brouquisse, R., Corpas, F.J., Gupta, K.J., Lindermayr, C., Loake, G.J., Palma, J.M., Petrivalsky, M., Wendehenne, D., et al., 2019. A forty year journey: The generation and roles of NO in plants. Nitric Oxide 93, 53-70.
|
[38] |
Kwon, E., Feechan, A., Yun, B.W., Hwang, B.H., Pallas, J.A., Kang, J.G., Loake, G.J., 2012. AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236, 887-900.
|
[39] |
Lalmansingh, J.M., Keeley, A.T., Ruff, K.M., Pappu, R.V., Holehouse, A.S., 2023. SOURSOP: A Python package for the analysis of simulations of intrinsically disordered proteins. bioRxiv, https://doi.org/ 10.1101/2023.02.16.528879.
|
[40] |
Lee, U., Wie, C., Fernandez, B.O., Feelisch, M., Vierling, E., 2008. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20, 786-802.
|
[41] |
Li, D., Fu, Y., Sun, R., Ling, C.X., Wei, Y., Zhou, H., Zeng, R., Yang, Q., He, S., Gao, W., 2005. pFind: a novel database-searching software system for automated peptide and protein identification via tandem mass spectrometry. Bioinformatics 21, 3049-3050.
|
[42] |
Li, R., Jia, Y., Yu, L., Yang, W., Chen, Z., Chen, H., Hu, X., 2018. Nitric oxide promotes light-initiated seed germination by repressing PIF1 expression and stabilizing HFR1. Plant Physiol. Biochem. 123, 204-212.
|
[43] |
Li, X., Pan, Y., Chang, B., Wang, Y., Tang, Z., 2016. NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Front. Plant Sci. 6, 1203.
|
[44] |
Lindermayr, C., Saalbach, G., Bahnweg, G., Durner, J., 2006. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J. Biol. Chem. 281, 4285-4291.
|
[45] |
Lv, B., Yu, Q., Liu, J., Wen, X., Yan, Z., Hu, K., Li, H., Kong, X., Li, C., Tian, H., et al., 2020. Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J. 39, e101515.
|
[46] |
McGibbon, R.T., Beauchamp, K.A., Harrigan, M.P., Klein, C., Swails, J.M., Hernandez, C.X., Schwantes, C.R., Wang, L.P., Lane, T.J., Pande, V.S., 2015. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528-1532.
|
[47] |
Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., Steinegger, M., 2022. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679-682.
|
[48] |
Morffy, N., Strader, L.C., 2022. Structural aspects of auxin signaling. Cold Spring Harb Perspect Biol. 14, a039883.
|
[49] |
Ni, M., Zhang, L., Shi, Y.F., Wang, C., Lu, Y., Pan, J., Liu, J.Z., 2017. Excessive cellular S-nitrosothiol impairs endocytosis of auxin efflux transporter PIN2. Front. Plant Sci. 8, 1988.
|
[50] |
Niemeyer, M., Castillo, E.M., Ihling, C.H., Iacobucci, C., Wilde, V., Hellmuth, A., Hoehenwarter, W., Samodelov, S.L., Zurbriggen, M.D., Kastritis, P.L., et al., 2020. Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Nat. Commun. 11, 2277.
|
[51] |
Otvos, K., Pasternak, T.P., Miskolczi, P., Domoki, M., Dorjgotov, D., Szucs, A., Bottka, S., Dudits, D., Feher, A., 2005. Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. Plant J. 43, 849-860.
|
[52] |
Pagnussat, G.C., Lanteri, M.L., Lamattina, L., 2003. Nitric oxide and cyclic gmp are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 132, 1241-1248.
|
[53] |
Pagnussat, G.C., Simontacchi, M., Puntarulo, S., Lamattina, L., 2002. Nitric oxide is required for root organogenesis. Plant Physiol. 129, 954-956.
|
[54] |
Pande, A., Mun, B.G., Rahim, W., Khan, M., Lee, D.S., Lee, G.M., Al Azzawi, T.N.I., Hussain, A., Kim, C.K., Yun, B.W., 2022. Phytohormonal regulation through protein S-nitrosylation under stress. Front. Plant Sci. 13, 865542.
|
[55] |
Pierre-Jerome, E., Wright, R.C., Nemhauser, J.L., 2017. Characterizing auxin response circuits in Saccharomyces cerevisiae by flow cytometry. Methods Mol. Biol. 1497, 271-281.
|
[56] |
Powers, S.K.,Strader, L.C., 2020. Regulation of auxin transcriptional responses. Dev. Dyn. 249, 483-495.
|
[57] |
Rose, A.S., Bradley, A.R., Valasatava, Y., Duarte, J.M., Prlic, A.,Rose, P.W., 2018. NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34, 3755-3758.
|
[58] |
Shang, J.X., Li, X., Li, C., Zhao, L., 2022. The role of nitric oxide in plant responses to salt stress. Int. J. Mol. Sci. 23, 6167.
|
[59] |
Shi, Y.F., Wang, D.L., Wang, C., Culler, A.H., Kreiser, M.A., Suresh, J., Cohen, J.D., Pan, J., Baker, B., Liu, J.Z., 2015. Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Mol. Plant 8, 1350-1365.
|
[60] |
Signorelli, S., Considine, M.J., 2018. Nitric oxide enables germination by a four-pronged attack on ABA-induced seed dormancy. Front. Plant Sci. 9, 296.
|
[61] |
Stone, S.L., Williams, L.A., Farmer, L.M., Vierstra, R.D., Callis, J., 2006. Keep on going, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415-3428.
|
[62] |
Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., Dong, X., 2008. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952-956.
|
[63] |
Tan, X., Calderon-Villalobos, L.I.A., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., Zheng, N., 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645.
|
[64] |
Terrile, M.C., Paris, R., Calderon-Villalobos, L.I.A., Iglesias, M.J., Lamattina, L., Estelle, M., Casalongue, C.A., 2012. Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J. 70, 492-500.
|
[65] |
Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., Veld, P.J.I., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., et al., 2022. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171.
|
[66] |
Wang, P., Du, Y., Hou, Y.J., Zhao, Y., Hsu, C.C., Yuan, F., Zhu, X., Tao, W.A., Song, C.P., Zhu, J.K., 2015. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. Natl. Acad. Sci. U. S. A. 112, 613-618.
|
[67] |
Wang, Y.Q., Feechan, A., Yun, B.W., Shafiei, R., Hofmann, A., Taylor, P., Xue, P., Yang, F.Q., Xie, Z.S., Pallas, J.A., et al., 2009. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J. Biol. Chem. 284, 2131-2137.
|
[68] |
Winkler, M., Niemeyer, M., Hellmuth, A., Janitza, P., Christ, G., Samodelov, S.L., Wilde, V., Majovsky, P., Trujillo, M., Zurbriggen, M.D., et al., 2017. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nat. Commun. 8, 15706.
|
[69] |
Yang, H., Mu, J., Chen, L., Feng, J., Hu, J., Li, L., Zhou, J.M., Zuo, J., 2015. S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol. 167, 1604-1615.
|
[70] |
Yu, Z., Zhang, F., Friml, J., Ding, Z., 2022. Auxin signaling: Research advances over the past 30 years. J. Integr. Plant Biol. 64, 371-392.
|
[71] |
Yun, B.W., Feechan, A., Yin, M., Saidi, N.B.B., Le Bihan, T., Yu, M., Moore, J.W., Kang, J.G., Kwon, E., Spoel, S.H., et al., 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478, 264-268.
|
[72] |
Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., et al., 2018. S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol. Cell 71, 142-154.
|
[73] |
Zhang, H.T., Zeng, L.F., He, Q.Y., Tao, W.A., Zha, Z.G., Hu, C.D., 2016. The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5. Biochim. Biophys. Acta 1863, 335-346.
|
[74] |
Zhang, J., Huang, D., Wang, C., Wang, B., Fang, H., Huo, J., Liao, W., 2019. Recent progress in protein S-nitrosylation in phytohormone signaling. Plant Cell Physiol. 60, 494-502.
|