Al-Sady, B., Ni, W., Kircher, S., Schafer, E., Quail, P.H., 2006. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell 23, 439-446.
|
Arico, D., Legris, M., Castro, L., Garcia, C.F., Laino, A., Casal, J.J., Mazzella, M.A., 2019. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant Cell Environ. 42, 2554-2566.
|
Balcerowicz, M., 2020. PHYTOCHROME-INTERACTING FACTORS at the interface of light and temperature signalling. Physiol. Plantarum 169, 347-356.
|
Briggs, W.R., Christie, J.M., 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7, 204-210.
|
Cao, X., Xu, P., Liu, Y., Yang, G., Liu, M., Chen, L., Cheng, Y., Xu, P., Miao, L., Mao, Z., et al., 2021. Arabidopsis cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNA-binding activity. J. Integr. Plant Biol. 63, 1967-1981.
|
Cashmore, A.R., Jarillo, J.A., Wu, Y.J., Liu, D., 1999. Cryptochromes: blue light receptors for plants and animals. Science 284, 760-765.
|
Castillon, A., Shen, H., Huq, E., 2007. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 12, 514-521.
|
Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R., Tang, X., Zhou, J.M., 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 146, 368-376.
|
Cheng, M.C., Kathare, P.K., Paik, I., Huq, E., 2021. Phytochrome signaling networks. Annu. Rev. Plant Biol. 72, 217-244.
|
Choi, K., Park, C., Lee, J., Oh, M., Noh, B., Lee, I., 2007. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development 134, 1931-1941.
|
Coleman-Derr, D., Zilberman, D., 2012. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet. 8, e1002988.
|
Cuadrado, A., Corrado, N., Perdiguero, E., Lafarga, V., Munoz-Canoves, P., Nebreda, A.R., 2010. Essential role of p18Hamlet/SRCAP-mediated histone H2A.Z chromatin incorporation in muscle differentiation. EMBO J. 29, 2014-2025.
|
Deal, R.B., Kandasamy, M.K., McKinney, E.C., Meagher, R.B., 2005. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. Plant Cell 17, 2633-2646.
|
Deal, R.B., Topp, C.N., McKinney, E.C., Meagher, R.B., 2007. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 19, 74-83.
|
Dong, J., Ni, W., Yu, R., Deng, X.W., Chen, H., Wei, N., 2017. Light-Dependent degradation of PIF3 by SCF(EBF1/2) promotes a photomorphogenic response in Arabidopsis. Curr. Biol. 27, 2420-2430 e2426.
|
Du, S.S., Li, L., Li, L., Wei, X., Xu, F., Xu, P., Wang, W., Xu, P., Cao, X., Miao, L., et al., 2020. Photoexcited Cryptochrome2 interacts directly with TOE1 and TOE2 in flowering regulation. Plant Physiol. 184, 487-505.
|
Fankhauser, C., Chen, M., 2008. Transposing phytochrome into the nucleus. Trends Plant Sci. 13, 596-601.
|
Gangappa, S.N., Kumar, S.V., 2017. DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Rep. 18, 344-351.
|
Gu, D., Chen, C.Y., Zhao, M., Zhao, L., Duan, X., Duan, J., Wu, K., Liu, X., 2017. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Res. 45, 7137-7150.
|
Huai, J., Zhang, X., Li, J., Ma, T., Zha, P., Jing, Y., Lin, R., 2018. SEUSS and PIF4 coordinately regulate light and temperature signaling pathways to control plant growth. Mol. Plant 11, 928-942.
|
Jia, K.P., Luo, Q., He, S.B., Lu, X.D., Yang, H.Q., 2014. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol. Plant 7, 528-540.
|
Jiang, B., Shi, Y., Zhang, X., Xin, X., Qi, L., Guo, H., Li, J., Yang, S., 2017. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A 114, E6695-E6702.
|
Jing, Y., Zhang, D., Wang, X., Tang, W., Wang, W., Huai, J., Xu, G., Chen, D., Li, Y., Lin, R., 2013. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell 25, 242-256.
|
Jung, J.H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S., et al., 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354, 886-889.
|
Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., Franklin, K.A., 2009. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408-413.
|
Kumar, S.V., 2018. H2A.Z at the core of transcriptional regulation in plants. Mol. Plant 11, 1112-1114.
|
Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alos, E., Alvey, E., Harberd, N.P., Wigge, P.A., 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242-245.
|
Kumar, S.V., Wigge, P.A., 2010. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136-147.
|
Lazaro, A., Gomez-Zambrano, A., Lopez-Gonzalez, L., Pineiro, M., Jarillo, J.A., 2008. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development. J. Exp. Bot. 59, 653-666.
|
Lee, K., Seo, P.J., 2017. Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation. PLoS One 12, e0181804.
|
Legris, M., Klose, C., Burgie, E.S., Rojas, C.C., Neme, M., Hiltbrunner, A., Wigge, P.A., Schafer, E., Vierstra, R.D., Casal, J.J., 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897-900.
|
Leivar, P., Monte, E., 2014. PIFs: systems integrators in plant development. Plant Cell 26, 56-78.
|
Leivar, P., Tepperman, J.M., Monte, E., Calderon, R.H., Liu, T.L., Quail, P.H., 2009. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21, 3535-3553.
|
Li, J., Li, G., Wang, H., Wang Deng, X., 2011. Phytochrome signaling mechanisms. Arabidopsis Book 9, e0148.
|
Lian, H., Xu, P., He, S., Wu, J., Pan, J., Wang, W., Xu, F., Wang, S., Pan, J., Huang, J., et al., 2018. Photoexcited CRYPTOCHROME 1 interacts directly with G-protein beta subunit AGB1 to regulate the DNA-binding activity of HY5 and photomorphogenesis in Arabidopsis. Mol. Plant 11, 1248-1263.
|
Ling, J.J., Li, J., Zhu, D., Deng, X.W., 2017. Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. Proc. Natl. Acad. Sci. U. S. A 114, 3539-3544.
|
Liu, X., Chen, C.Y., Wang, K.C., Luo, M., Tai, R., Yuan, L., Zhao, M., Yang, S., Tian, G., Cui, Y., et al., 2013. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25, 1258-1273.
|
Lu, X.D., Zhou, C.M., Xu, P.B., Luo, Q., Lian, H.L., Yang, H.Q., 2015. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol. Plant 8, 467-478.
|
Mao, J., Zhang, Y.C., Sang, Y., Li, Q.H., Yang, H.Q., 2005. From the Cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. U. S. A 102, 12270-12275.
|
Mao, Z., He, S., Xu, F., Wei, X., Jiang, L., Liu, Y., Wang, W., Li, T., Xu, P., Du, S., et al., 2020. Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis. New Phytol. 225, 848-865.
|
Mao, Z., Wei, X., Li, L., Xu, P., Zhang, J., Wang, W., Guo, T., Kou, S., Wang, W., Miao, L., et al., 2021. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. Plant Cell 33, 1961-1979.
|
March-Diaz et al., 2007 March-Diaz, R., Garcia-Dominguez, M., Florencio, F.J., Reyes, J.C., 2007. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiol. 143, 893-901.
|
Ni, M., Tepperman, J.M., Quail, P.H., 1998. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657-667.
|
Ni, W., Xu, S.L., Gonzalez-Grandio, E., Chalkley, R.J., Huhmer, A.F.R., Burlingame, A.L., Wang, Z.Y., Quail, P.H., 2017. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat. Commun. 8, 15236.
|
Ni, W., Xu, S.L., Tepperman, J.M., Stanley, D.J., Maltby, D.A., Gross, J.D., Burlingame, A.L., Wang, Z.Y., Quail, P.H., 2014. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344, 1160-1164.
|
Oh, E., Zhu, J.Y., Bai, M.Y., Arenhart, R.A., Sun, Y., Wang, Z.Y., 2014. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife 3.
|
Osterlund, M.T., Hardtke, C.S., Wei, N., Deng, X.W., 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466.
|
Oyama, T., Shimura, Y., Okada, K., 1997. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11, 2983-2995.
|
Paik, I., Kathare, P.K., Kim, J.I., Huq, E., 2017. Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant 10, 1035-1046.
|
Park, E., Kim, J., Lee, Y., Shin, J., Oh, E., Chung, W.I., Liu, J.R., Choi, G., 2004. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol. 45, 968-975.
|
Peng, M., Li, Z., Zhou, N., Ma, M., Jiang, Y., Dong, A., Shen, W.H., Li, L., 2018. Linking PHYTOCHROME-INTERACTING FACTOR to histone modification in plant shade avoidance. Plant Physiol. 176, 1341-1351.
|
Qi, L., Shi, Y., Terzaghi, W., Yang, S., Li, J., 2022. Integration of light and temperature signaling pathways in plants. J. Integr. Plant Biol. 64, 393-411.
|
Quail, P.H., 2002. Phytochrome photosensory signalling networks. Nat. Rev. Mol. Cell Biol. 3, 85-93.
|
Rizzini, L., Favory, J.J., Cloix, C., Faggionato, D., O'Hara, A., Kaiserli, E., Baumeister, R., Schafer, E., Nagy, F., Jenkins, G.I., et al., 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103-106.
|
Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., Choi, G., 2014. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5, 4636.
|
Shen, H., Zhu, L., Castillon, A., Majee, M., Downie, B., Huq, E., 2008. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20, 1586-1602.
|
Shen, Y., Khanna, R., Carle, C.M., Quail, P.H., 2007. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol. 145, 1043-1051.
|
Song, Y., Yang, C., Gao, S., Zhang, W., Li, L., Kuai, B., 2014. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol. Plant 7, 1776-1787.
|
Sun, J., Qi, L., Li, Y., Zhai, Q., Li, C., 2013. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25, 2102-2114.
|
Sura, W., Kabza, M., Karlowski, W.M., Bieluszewski, T., Kus-Slowinska, M., Paweloszek, L., Sadowski, J., Ziolkowski, P.A., 2017. Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes. Plant Cell 29, 791-807.
|
Tong, M., Lee, K., Ezer, D., Cortijo, S., Jung, J., Charoensawan, V., Box, M.S., Jaeger, K.E., Takahashi, N., Mas, P., et al., 2020. The evening complex establishes repressive chromatin domains via H2A.Z deposition. Plant Physiol. 182, 612-625.
|
van der Woude, L.C., Perrella, G., Snoek, B.L., van Hoogdalem, M., Novak, O., van Verk, M.C., van Kooten, H.N., Zorn, L.E., Tonckens, R., Dongus, J.A., et al., 2019. HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc. Natl. Acad. Sci. U. S. A 116, 25343-25354.
|
Wang, W., Lu, X., Li, L., Lian, H., Mao, Z., Xu, P., Guo, T., Xu, F., Du, S., Cao, X., et al., 2018. Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate brassinosteroid signaling and photomorphogenesis in Arabidopsis. Plant Cell 30, 1989-2005.
|
Wei, X., Wang, W., Xu, P., Wang, W., Guo, T., Kou, S., Liu, M., Niu, Y., Yang, H.Q., Mao, Z., 2021. Phytochrome B interacts with SWC6 and ARP6 to regulate H2A.Z deposition and photomorphogensis in Arabidopsis. J. Integr. Plant Biol. 63, 1133-1146.
|
Willhoft, O., Wigley, D.B., 2020. INO80 and SWR1 complexes: the non-identical twins of chromatin remodelling. Curr. Opin. Struct. Biol. 61, 50-58.
|
Willige, B.C., Zander, M., Yoo, C.Y., Phan, A., Garza, R.M., Wanamaker, S.A., He, Y., Nery, J.R., Chen, H., Chen, M., et al., 2021. PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. Nat. Genet. 53, 955-961.
|
Xin, X., Chen, W., Wang, B., Zhu, F., Li, Y., Yang, H., Li, J., Ren, D., 2018. Arabidopsis MKK10-MPK6 mediates red-light-regulated opening of seedling cotyledons through phosphorylation of PIF3. J. Exp. Bot. 69, 423-439.
|
Xu, P., Lian, H., Xu, F., Zhang, T., Wang, S., Wang, W., Du, S., Huang, J., Yang, H.Q., 2019. Phytochrome B and AGB1 coordinately regulate photomorphogenesis by antagonistically modulating PIF3 stability in Arabidopsis. Mol. Plant 12, 229-247.
|
Xue, M., Zhang, H., Zhao, F., Zhao, T., Li, H., Jiang, D., 2021. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. Mol. Plant 14, 1799-1813.
|
Yadav, A., Singh, D., Lingwan, M., Yadukrishnan, P., Masakapalli, S.K., Datta, S., 2020. Light signaling and UV-B-mediated plant growth regulation. J. Integr. Plant Biol. 62, 1270-1292.
|
Ye, B., Liu, B., Yang, L., Huang, G., Hao, L., Xia, P., Wang, S., Du, Y., Qin, X., Zhu, P., et al., 2017. Suppression of SRCAP chromatin remodelling complex and restriction of lymphoid lineage commitment by Pcid2. Nat. Commun. 8, 1518.
|
Zhang, C., Qian, Q., Huang, X., Zhang, W., Liu, X., Hou, X., 2021a. NF-YCs modulate histone variant H2A.Z deposition to regulate photomorphogenic growth in Arabidopsis. J. Integr. Plant Biol. 63, 1120-1132.
|
Zhang, D., Jing, Y., Jiang, Z., Lin, R., 2014a. The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell 26, 2472-2485.
|
Zhang, D., Li, Y., Zhang, X., Zha, P., Lin, R., 2017. The SWI2/SNF2 chromatin-remodeling ATPase BRAHMA regulates chlorophyll biosynthesis in Arabidopsis. Mol. Plant 10, 155-167.
|
Zhang, J.Y., He, S.B., Li, L., Yang, H.Q., 2014b. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll. Proc. Natl. Acad. Sci. U. S. A 111, E3015-E3023.
|
Zhang, Y., Li, N., Wang, L., 2021b. Phytochrome interacting factor proteins regulate cytokinesis in Arabidopsis. Cell Rep. 35, 109095.
|
Zhang, Y., Mayba, O., Pfeiffer, A., Shi, H., Tepperman, J.M., Speed, T.P., Quail, P.H., 2013. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet. 9, e1003244.
|