[1] |
Akiva, P., Toporik, A., Edelheit, S., Peretz, Y., Diber, A., Shemesh, R., Novik, A.,Sorek, R., 2006. Transcription-mediated gene fusion in the human genome. Genome Res. 16, 30-36.
|
[2] |
Almeida, M.V., Vernaz, G., Putman, A.L.K.,Miska, E.A., 2022. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet. 38, 529-553.
|
[3] |
Babcock, M., Pavlicek, A., Spiteri, E., Kashork, C.D., Ioshikhes, I., Shaffer, L.G., Jurka, J.,Morrow, B.E., 2003. Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution. Genome Res. 13, 2519-2532.
|
[4] |
Bailey, J.A., Liu, G.,Eichler, E.E., 2003. An Alu transposition model for the origin and expansion of human segmental duplications. Am. J. Hum. Genet. 73, 823-834.
|
[5] |
Barbaglia, A.M., Klusman, K.M., Higgins, J., Shaw, J.R., Hannah, L.C.,Lal, S.K., 2012. Gene capture by Helitron transposons reshuffles the transcriptome of maize. Genetics 190, 965-975.
|
[6] |
Batcher, K., Dickinson, P., Maciejczyk, K., Brzeski, K., Rasouliha, S.H., Letko, A., Droegemueller, C., Leeb, T.,Bannasch, D., 2020. Multiple FGF4 retrocopies recently derived within canids. Genes 11, 839.
|
[7] |
Batcher, K., Varney, S., York, D., Blacksmith, M., Kidd, J.M., Rebhun, R., Dickinson, P.,Bannasch, D., 2022. Recent, full-length gene retrocopies are common in canids. Genome Res. 32, 1602-1611.
|
[8] |
Betran, E.,Long, M., 2001. Gene Fusion. e LS.
|
[9] |
Brunner, S., Pea, G.,Rafalski, A., 2005. Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. Plant J. 43, 799-810.
|
[10] |
Buzdin, A., Gogvadze, E., Kovalskaya, E., Volchkov, P., Ustyugova, S., Illarionova, A., Fushan, A., Vinogradova, T.,Sverdlov, E., 2003. The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. Nucleic Acids Res. 31, 4385-4390.
|
[11] |
Buzdin, A., Ustyugova, S., Gogvadze, E., Vinogradova, T., Lebedev, Y.,Sverdlov, E., 2002. A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3' terminus of L1. Genomics 80, 402-406.
|
[12] |
Calatrava, V., Stephens, T.G., Gabr, A., Bhaya, D., Bhattacharya, D.,Grossman, A.R., 2022. Retrotransposition facilitated the establishment of a primary plastid in the thecate amoeba Paulinella. Proc. Natl. Acad. Sci. U. S. A. 119, e2121241119.
|
[13] |
Carelli, F.N., Hayakawa, T., Go, Y., Imai, H., Warnefors, M.,Kaessmann, H., 2016. The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res. 26, 301-314.
|
[14] |
Catoni, M., Jonesman, T., Cerruti, E.,Paszkowski, J., 2019. Mobilization of Pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling. Nucleic Acids Res. 47, 1311-1320.
|
[15] |
Cerbin, S.,Jiang, N., 2018. Duplication of host genes by transposable elements. Curr. Opin. Genet. Dev. 49, 63-69.
|
[16] |
Chan, Y.F., Marks, M.E., Jones, F.C., Villarreal, G., Jr., Shapiro, M.D., Brady, S.D., Southwick, A.M., Absher, D.M., Grimwood, J., Schmutz, J., et al., 2010. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302-305.
|
[17] |
Ciomborowska, J., Rosikiewicz, W., Szklarczyk, D., Makalowski, W.,Makalowska, I., 2013. "Orphan" retrogenes in the human genome. Mol. Biol. Evol. 30, 384-396.
|
[18] |
Cosby, R.L., Chang, N.-C.,Feschotte, C., 2019. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev. 33, 1098-1116.
|
[19] |
Cosby, R.L., Judd, J., Zhang, R., Zhong, A., Garry, N., Pritham, E.J.,Feschotte, C., 2021. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 371, eabc6405.
|
[20] |
Cost, G.J., Feng, Q.H., Jacquier, A.,Boeke, J.D., 2002. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21, 5899-5910.
|
[21] |
Delviks-Frankenberry, K., Galli, A., Nikolaitchik, O., Mens, H., Pathak, V.K.,Hu, W.-S., 2011. Mechanisms and factors that influence high frequency retroviral recombination. Viruses 3, 1650-1680.
|
[22] |
Derr, L.K., Strathern, J.N.,Garfinkel, D.J., 1991. RNA-mediated recombination in Saccharomyces-cerevisiae. Cell 67, 355-364.
|
[23] |
Dobzhansky, T., 1973. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35, 125-129.
|
[24] |
Dong, Y., Lu, X., Song, W., Shi, L., Zhang, M., Zhao, H., Jiao, Y.,Lai, J., 2011. Structural characterization of helitrons and their stepwise capturing of gene fragments in the maize genome. BMC Genomics 12, 1-11.
|
[25] |
Dooner, H.K.,Weil, C.F., 2007. Give-and-take: interactions between DNA transposons and their host plant genomes. Curr. Opin. Genet. Dev. 17, 486-492.
|
[26] |
Dooner, H.K.,Weil, C.F., 2013. Transposons and Gene Creation. Plant Transposons Genome Dynamics in Evolution pp, 143-164.
|
[27] |
Eickbush, T.H., 1992. Transposing without ends - the non-LTR retrotransposable elements. New Biol. 4, 430-440.
|
[28] |
Elrouby, N.,Bureau, T.E., 2010. Bs1, a new chimeric gene formed by retrotransposon-mediated exon shuffling in maize. Plant Physiol. 153, 1413-1424.
|
[29] |
Emerson, J.J., Cardoso-Moreira, M., Borevitz, J.O.,Long, M., 2008. Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320, 1629-1631.
|
[30] |
Emerson, J.J., Kaessmann, H., Betran, E.,Long, M.Y., 2004. Extensive gene traffic on the mammalian X chromosome. Science 303, 537-540.
|
[31] |
Fanning, T.G.,Singer, M.F., 1987. LINE-1 - a mammalian transposable element. Biochim. Biophys. Acta 910, 203-212.
|
[32] |
Feng, Q.H., Moran, J.V., Kazazian, H.H.,Boeke, J.D., 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905-916.
|
[33] |
Feschotte, C.,Wessler, S.R., 2001. Treasures in the attic: rolling circle transposons discovered in eukaryotic genomes. Proc. Natl. Acad. Sci. U. S. A. 98, 8923-8924.
|
[34] |
Finnegan, D.J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5, 103-107.
|
[35] |
Fueyo, R., Judd, J., Feschotte, C.,Wysocka, J., 2022. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481-497.
|
[36] |
Gilbert, W., 1978. Why genes in pieces. Nature 271, 501-501.
|
[37] |
Gloor, G.B., Nassif, N.A., Johnsonschlitz, D.M., Preston, C.R.,Engels, W.R., 1991. Targeted gene replacement in Drosophila via P-element-induced gap repair. Science 253, 1110-1117.
|
[38] |
Goodier, J.L., Ostertag, E.M.,Kazazian, H.H., 2000. Transduction of 3'-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9, 653-657.
|
[39] |
Goodrich, D.W.,Duesberg, P.H., 1990. Retroviral recombination during reverse transcription. Proc. Natl. Acad. Sci. U. S. A. 87, 2052-2056.
|
[40] |
Grabundzija, I., Hickman, A.B.,Dyda, F., 2018. Helraiser intermediates provide insight into the mechanism of eukaryotic replicative transposition. Nat. Commun. 9, 1278.
|
[41] |
Grabundzija, I., Messing, S.A., Thomas, J., Cosby, R.L., Bilic, I., Miskey, C., Gogol-Doering, A., Kapitonov, V., Diem, T., Dalda, A., et al., 2016. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat. Commun. 7, 10716.
|
[42] |
Gray, Y.H.M., 2000. It takes two transposons to tango - transposable-element-mediated chromosomal rearrangements. Trends Genet. 16, 461-468.
|
[43] |
Hajjar, A.M.,Linial, M.L., 1993. A model system for nonhomologous recombination between retroviral and cellular RNA. J. Virol. 67, 3845-3853.
|
[44] |
Han, M.-J., Shen, Y.-H., Xu, M.-S., Liang, H.-Y., Zhang, H.-H.,Zhang, Z., 2013. Identification and evolution of the silkworm Helitrons and their contribution to transcripts. DNA Res. 20, 471-484.
|
[45] |
Hanada, K., Vallejo, V., Nobuta, K., Slotkin, R.K., Lisch, D., Meyers, B.C., Shiu, S.-H.,Jiang, N., 2009. The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell 21, 25-38.
|
[46] |
Hu, Y., Wu, X., Jin, G., Peng, J., Leng, R., Li, L., Gui, D., Fan, C.,Zhang, C., 2022. Rapid genome evolution and adaptation of Thlaspi arvense mediated by recurrent RNA-based and tandem gene duplications. Front. Plant Sci. 12, 772655.
|
[47] |
Hwang, S.-Y., Jung, H., Mun, S., Lee, S., Park, K., Baek, S.C., Moon, H.C., Kim, H., Kim, B., Choi, Y., et al., 2021. L1 retrotransposons exploit RNA m(6)A modification as an evolutionary driving force. Nat. Commun. 12, 880.
|
[48] |
Innan, H.,Kondrashov, F., 2010. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97-108.
|
[49] |
Izsvak, Z., Stuwe, E., Fiedler, D., Katzer, A., Jeggo, P.,Ivics, Z., 2004. Healing the wounds inflicted by Sleeping Beauty transposition by double-strand break repair in mammalian somatic cells. Eur. J. Cell Biol. 83, 279-290.
|
[50] |
Jamain, S., Girondot, M., Leroy, P., Clergue, M., Quach, H., Fellous, M.,Bourgeron, T., 2001. Transduction of the human gene FAM8A1 by endogenous retrovirus during primate evolution. Genomics 78, 38-45.
|
[51] |
Jiang, N., Bao, Z.R., Zhang, X.Y., Eddy, S.R.,Wessler, S.R., 2004. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431, 569-573.
|
[52] |
Jiang, N., Gao, D., Xiao, H.,van der Knaap, E., 2009. Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. Plant J. 60, 181-193.
|
[53] |
Kaessmann, H., 2009. Genetics. More than just a copy. Science 325, 958-959.
|
[54] |
Kaessmann, H., Vinckenbosch, N.,Long, M., 2009. RNA-based gene duplication: mechanistic and evolutionary insights. Nat. Rev. Genet. 10, 19-31.
|
[55] |
Kapitonov, V.V.,Jurka, J., 2007. Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet. 23, 521-529.
|
[56] |
Katju, V., 2012. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. Int. J. Evol. Biol. 2012, 341932-341932.
|
[57] |
Kazazian, H.H., 2004. Mobile elements: drivers of genome evolution. Science 303, 1626-1632.
|
[58] |
Kazazian, H.H.,Moran, J.V., 1998. The impact of L1 retrotransposons on the human genome. Nat. Genet. 19, 19-24.
|
[59] |
Kleckner, N., Chan, R.K., Tye, B.-K.,Botstein, D., 1975. Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J. Mol. Biol. 97, 561-575.
|
[60] |
Kojima, K.K., Bao, W., Kojima, N.F.,Kohany, O., 2023. Repbase 2022 Year in Review.
|
[61] |
Kosek, D., Grabundzija, I., Lei, H., Bilic, I., Wang, H., Jin, Y., Peaslee, G.F., Hickman, A.B.,Dyda, F., 2021. The large bat Helitron DNA transposase forms a compact monomeric assembly that buries and protects its covalently bound 5'-transposon end. Mol. Cell 81, 4271-4286.
|
[62] |
Kubiak, M.R.,Makalowska, I., 2017. Protein-coding genes' retrocopies and their functions. Viruses 9, 80.
|
[63] |
Lal, S., Oetjens, M.,Hannah, L.C., 2009. Helitrons: enigmatic abductors and mobilizers of host genome sequences. Plant Sci. (Amsterdam, Neth.) 176, 181-186.
|
[64] |
Lisch, D., 2005. Pack-MULEs: theft on a massive scale. Bioessays 27, 353-355.
|
[65] |
Long, M., Betran, E., Thornton, K.,Wang, W., 2003. The origin of new genes: glimpses from the young and old. Nat. Rev. Genet. 4, 865-875.
|
[66] |
Long, M., VanKuren, N.W., Chen, S.,Vibranovski, M.D., 2013. New gene evolution: little did we know. Annu. Rev. Genet. 47, 307-333.
|
[67] |
Long, M.Y.,Langley, C.H., 1993. Natural-selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91-95.
|
[68] |
Luan, D.D., Korman, M.H., Jakubczak, J.L.,Eickbush, T.H., 1993. Reverse transcription of R2BM RNA is primed by a nick at the chromosomal target site - a mechanism for non-LTR retrotransposition. Cell 72, 595-605.
|
[69] |
Lynch, M.,Conery, J.S., 2000. The evolutionary fate and consequences of duplicate genes. Science 290, 1151-1155.
|
[70] |
Lynch, M.,Katju, V., 2004. The altered evolutionary trajectories of gene duplicates. Trends Genet. 20, 544-549.
|
[71] |
Ma, C., Li, C., Ma, H., Yu, D., Zhang, Y., Zhang, D., Su, T., Wu, J., Wang, X., Zhang, L., et al., 2022. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol. 23, 1-29.
|
[72] |
Makalowski, W., Mitchell, G.A.,Labuda, D., 1994. Alu sequences in the coding regions of messenger-RNA - source of protein variability. Trends Genet. 10, 188-193.
|
[73] |
Martin-Alonso, S., Frutos-Beltran, E.,Menendez-Arias, L., 2021. Reverse transcriptase: from transcriptomics to genome editing. Trends Biotechnol. 39, 194-210.
|
[74] |
McClintock, B., 1948. Mutable loci in maize. Carnegie Inst. Wash. 47, 155-169.
|
[75] |
McClintock, B., 1950. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. U. S. A. 36, 344-355.
|
[76] |
McClintock, B., 1956. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197-216.
|
[77] |
Moran, J.V., DeBerardinis, R.J.,Kazazian, H.H., 1999. Exon shuffling by L1 retrotransposition. Science 283, 1530-1534.
|
[78] |
Moran, J.V., Holmes, S.E., Naas, T.P., DeBerardinis, R.J., Boeke, J.D.,Kazazian, H.H., 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917-927.
|
[79] |
Moran, J.V., Zimmerly, S., Eskes, R., Kennell, J.C., Lambowitz, A.M., Butow, R.A.,Perlman, P.S., 1995. Mobile group-II introns of yeast mitochondrial-DNA are novel site-specific retroelements. Mol. Cell. Biol. 15, 2828-2838.
|
[80] |
Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, A.,Rafalski, A., 2005. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat. Genet. 37, 997-1002.
|
[81] |
Nei, M., 2007. The new mutation theory of phenotypic evolution. Proc. Natl. Acad. Sci. U. S. A. 104, 12235-12242.
|
[82] |
Ohno, S., 1970. Evolution by Gene Duplication. London: George Alien & Unwin Ltd. Berlin, Heidelberg and New York: Springer-Verlag.
|
[83] |
Pan, D.,Zhang, L., 2009. Burst of young retrogenes and independent retrogene formation in mammals. PLoS One 4, e5040.
|
[84] |
Parker, H.G., VonHoldt, B.M., Quignon, P., Margulies, E.H., Shao, S., Mosher, D.S., Spady, T.C., Elkahloun, A., Cargill, M., Jones, P.G., et al., 2009. An expressed Fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325, 995-998.
|
[85] |
Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., et al., 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556.
|
[86] |
Peng, H., Mirouze, M.,Bucher, E., 2022. Extrachromosomal circular DNA: a neglected nucleic acid molecule in plants. Curr. Opin. Plant Biol. 69, 102263.
|
[87] |
Petrov, D.A., Lozovskaya, E.R.,Hartl, D.L., 1996. High intrinsic: rate of DNA loss in Drosophila. Nature 384, 346-349.
|
[88] |
Pickeral, O.K., Makalowski, W., Boguski, M.S.,Boeke, J.D., 2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10, 411-415.
|
[89] |
Pritham, E.J.,Feschotte, C., 2007. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc. Natl. Acad. Sci. U. S. A. 104, 1895-1900.
|
[90] |
Qian, W.,Zhang, J., 2008. Gene dosage and gene duplicability. Genetics 179, 2319-2324.
|
[91] |
Rosenberg, S.M.,Queitsch, C., 2014. Combating evolution to fight disease. Science 343, 1088-1089.
|
[92] |
Rosikiewicz, W., Kabza, M., Kosinski, J.G., Ciomborowska-Basheer, J., Kubiak, M.R.,Makalowska, I., 2017. RetrogeneDB-a database of plant and animal retrocopies. Database-the Journal of Biological Databases and Curation.
|
[93] |
Rubin, G.M., Kidwell, M.G.,Bingham, P.M., 1982. The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29, 987-994.
|
[94] |
Sayah, D.M., Sokolskaja, E., Berthoux, L.,Luban, J., 2004. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569-573.
|
[95] |
Schacherer, J., Tourrette, Y., Souciet, J.L., Potier, S.,De Montigny, J., 2004. Recovery of a function involving gene duplication by retroposition in Saccharomyces cerevisiae. Genome Res. 14, 1291-1297.
|
[96] |
Sulak, M., Fong, L., Mika, K., Chigurupati, S., Yon, L., Mongan, N.P., Emes, R.D.,Lynch, V.J., 2016. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. Elife 5, e11994.
|
[97] |
Sun, C., Shepard, D.B., Chong, R.A., Arriaza, J.L., Hall, K., Castoe, T.A., Feschotte, C., Pollock, D.D.,Mueller, R.L., 2012. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol. Evol. 4, 168-183.
|
[98] |
Tan, S., Cardoso-Moreira, M., Shi, W., Zhang, D., Huang, J., Mao, Y., Jia, H., Zhang, Y., Chen, C., Shao, Y., et al., 2016. LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans. Genome Res. 26, 1663-1675.
|
[99] |
Tan, S., Ma, H., Wang, J., Wang, M., Wang, M., Yin, H., Zhang, Y., Zhang, X., Shen, J., Wang, D., et al., 2021. DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans. Nat. Commun. 12, 4280.
|
[100] |
Tempel, S., Nicolas, J., El Amrani, A.,Couee, I., 2007. Model-based identification of Helitrons results in a new classification of their families in Arabidopsis thaliana. Gene 403, 18-28.
|
[101] |
Thomas, J., Phillips, C.D., Baker, R.J.,Pritham, E.J., 2014. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol. Evol. 6, 2595-2610.
|
[102] |
Thomas, J.,Pritham, E.J., 2015. Helitrons, the eukaryotic rolling-circle transposable elements. Mobile DNA iii, 891-924.
|
[103] |
Tsubota, S.I.,Huong, D.V., 1991. Capture of flanking DNA by a P-element in Drosophila-melanogaster - creation of a transposable element. Proc. Natl. Acad. Sci. U. S. A. 88, 693-697.
|
[104] |
Vinckenbosch, N., Dupanloup, I.,Kaessmann, H., 2006. Evolutionary fate of retroposed gene copies in the human genome. Proc. Natl. Acad. Sci. U. S. A. 103, 3220-3225.
|
[105] |
Wang, D., Yu, C., Zuo, T., Zhang, J., Weber, D.F.,Peterson, T., 2015. Alternative transposition generates new chimeric genes and segmental duplications at the maize p1 locus. Genetics 201, 925-935.
|
[106] |
Wang, L., Tracy, L., Su, W., Yang, F., Feng, Y., Silverman, N.,Zhang, Z.Z.Z., 2022a. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses. Nat. Genet., 1-13.
|
[107] |
Wang, W., Brunet, F.G., Nevo, E.,Long, M., 2002. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 99, 4448-4453.
|
[108] |
Wang, W., Zheng, H., Fan, C., Li, J., Shi, J., Cai, Z., Zhang, G., Liu, D., Zhang, J., Vang, S., et al., 2006. High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18, 1791-1802.
|
[109] |
Wang, X., Yan, X., Hu, Y., Qin, L., Wang, D., Jia, J.,Jiao, Y., 2022b. A recent burst of gene duplications in Triticeae. Plant Commun. 3, 100286.
|
[110] |
Wei, W., Gilbert, N., Ooi, S.L., Lawler, J.F., Ostertag, E.M., Kazazian, H.H., Boeke, J.D.,Moran, J.V., 2001. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429-1439.
|
[111] |
Wells, J.N.,Feschotte, C., 2020. A field guide to eukaryotic transposable elements. Annu. Rev. Genet. 54, 539-561.
|
[112] |
Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., et al., 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973-982.
|
[113] |
Wilhelm, M.,Wilhelm, F.X., 2001. Reverse transcription of retroviruses and LTR retrotransposons. Cell. Mol. Life Sci. 58, 1246-1262.
|
[114] |
Witt, E., Benjamin, S., Svetec, N.,Zhao, L., 2019. Testis single-cell RNA-seq reveals the dynamics of de novo gene transcription and germline mutational bias in Drosophila. Elife 8, e47138.
|
[115] |
Xia, S., Wang, Z., Zhang, H., Hu, K., Zhang, Z., Qin, M., Dun, X., Yi, B., Wen, J., Ma, C., et al., 2016. Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. Plant Cell 28, 2060-2078.
|
[116] |
Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J.,van der Knaap, E., 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527-1530.
|
[117] |
Xie, K.T., Wang, G., Thompson, A.C., Wucherpfennig, J.I., Reimchen, T.E., MacColl, A.D.C., Schluter, D., Bell, M.A., Vasquez, K.M.,Kingsley, D.M., 2019. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363, 81-84.
|
[118] |
Yang, L., Emerman, M., Malik, H.S.,McLaughlin, R.N.J.E., 2020. Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates. Elife 9, e58436.
|
[119] |
Yang, L.X.,Bennetzen, J.L., 2009. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc. Natl. Acad. Sci. U. S. A. 106, 19922-19927.
|
[120] |
Yang, S., Arguello, J.R., Li, X., Ding, Y., Zhou, Q., Chen, Y., Zhang, Y., Zhao, R., Brunet, F., Peng, L., et al., 2008. Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet. 4, e3.
|
[121] |
Yant, S.R.,Kay, M.A., 2003. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol. Cell. Biol. 23, 8505-8518.
|
[122] |
Zhang, D., Leng, L., Chen, C., Huang, J., Zhang, Y., Yuan, H., Ma, C., Chen, H.,Zhang, Y.E., 2022. Dosage sensitivity and exon shuffling shape the landscape of polymorphic duplicates in Drosophila and humans. Nat. Ecol. Evol. 6, 273-287.
|
[123] |
Zhang, J., Yang, H., Long, M., Li, L.,Dean, A.M., 2010. Evolution of enzymatic activities of testis-specific short-chain dehydrogenase/reductase in Drosophila. J. Mol. Evol. 71, 241-249.
|
[124] |
Zhang, J.M., Dean, A.M., Brunet, F.,Long, M.Y., 2004a. Evolving protein functional diversity in new genes of Drosophila. Proc. Natl. Acad. Sci. U. S. A. 101, 16246-16250.
|
[125] |
Zhang, J.Z., 2003. Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292-298.
|
[126] |
Zhang, W.,Tautz, D., 2022. Tracing the origin and evolutionary fate of recent gene retrocopies in natural populations of the house mouse. Mol. Biol. Evol. 39, msab360.
|
[127] |
Zhang, Y., Lu, S., Zhao, S., Zheng, X., Long, M.,Wei, L., 2009. Positive selection for the male functionality of a co-retroposed gene in the hominoids. BMC Evol. Biol. 9, 1-12.
|
[128] |
Zhang, Z.L., Carriero, N.,Gerstein, M., 2004b. Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet. 20, 62-67.
|
[129] |
Zhang, Z.L., Harrison, P.M., Liu, Y.,Gerstein, M., 2003. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 13, 2541-2558.
|
[130] |
Zhao, D., Ferguson, A.A.,Jiang, N., 2016. What makes up plant genomes: the vanishing line between transposable elements and genes. Biochim. Biophys. Acta - Gene Regul. Mech. 1859, 366-380.
|
[131] |
Zhao, D., Hamilton, J.P., Vaillancourt, B., Zhang, W., Eizenga, G.C., Cui, Y., Jiang, J., Buell, C.R.,Jiang, N., 2018. The unique epigenetic features of Pack-MULEs and their impact on chromosomal base composition and expression spectrum. Nucleic Acids Res. 46, 2380-2397.
|
[132] |
Zhou, Y.,Zhang, C., 2019. Evolutionary patterns of chimeric retrogenes in Oryza species. Sci. Rep. 9, 17733.
|