5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 8
Aug.  2023
Turn off MathJax
Article Contents

CRISPR-detector: fast and accurate detection, visualization, and annotation of genome-wide mutations induced by genome editing events

doi: 10.1016/j.jgg.2023.03.010
Funds:

We would like to thank Dr. Hongxia Lan and Dr. Qianqian Gao for advising on our web server and providing sequencing data and colleagues at China National GeneBank (Shenzhen) and EHBIO Gene Technology (Beijing) for their guidance and help in constructing the web server. This work was supported by the Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ13-YQ-095 and ZZXT201708) and the Start-up Research Fund from BNU-HKBU United International College (UICR0700053-23).

  • Received Date: 2022-10-19
  • Accepted Date: 2023-03-08
  • Rev Recd Date: 2023-03-05
  • Publish Date: 2023-03-30
  • The leading-edge CRISPR/CRISPR-associated technology is revolutionizing biotechnologies through genome editing. To track on/off-target events with emerging new editing techniques, improved bioinformatic tools are indispensable. Existing tools suffer from limitations in speed and scalability, especially with whole-genome sequencing (WGS) data analysis. To address these limitations, we have developed a comprehensive tool called CRISPR-detector, a web-based and locally deployable pipeline for genome editing sequence analysis. The core analysis module of CRISPR-detector is based on the Sentieon TNscope pipeline, with additional novel annotation and visualization modules designed to fit CRISPR applications. Co-analysis of the treated and control samples is performed to remove existing background variants prior to genome editing. CRISPR-detector offers optimized scalability, enabling WGS data analysis beyond Browser Extensible Data file-defined regions, with improved accuracy due to haplotype-based variant calling to handle sequencing errors. In addition, the tool also provides integrated structural variation calling and includes functional and clinical annotations of editing-induced mutations appreciated by users. These advantages facilitate rapid and efficient detection of mutations induced by genome editing events, especially for datasets generated from WGS. The web-based version of CRISPR-detector is available at https://db.cngb.org/crispr-detector, and the locally deployable version is available at https://github.com/hlcas/CRISPR-detector.
  • loading
  • Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., et al., 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573.
    Akcakaya, P., Bobbin, M.L., Guo, J.A., Malagon-Lopez, J., Clement, K., Garcia, S.P., Fellows, M.D., Porritt, M.J., Firth, M.A., Carreras, A., et al., 2018. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416-419.
    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    Bae, S., Park, J., Kim, J.S., 2014. Cas-OFFinder:a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475.
    Bao, X.R., Pan, Y., Lee, C.M., Davis, T.H., Bao, G., 2021. Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nat. Protoc. 16, 10-26.
    Benjamin, D., Sato, T., Cibulskis, K., Getz, G., Stewart, C., Lichtenstein, L., 2019.
    Calling somatic SNVs and indels with Mutect2. bioRxiv. https://doi.org/10.1101/861054.
    Clement, K., Rees, H., Canver, M.C., Gehrke, J.M., Farouni, R., Hsu, J.Y., Cole, M.A., Liu, D.R., Joung, J.K., Bauer, D.E., et al., 2019. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224-226.
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    Ewing, A.D., Houlahan, K.E., Hu, Y., Ellrott, K., Caloian, C., Yamaguchi, T.N., Bare, J.C., P'ng, C., Waggott, D., Sabelnykova, V.Y., et al., 2015. Combining tumor genome simulation with crowdsourcing to benchmark somatic singlenucleotide-variant detection. Nat. Methods 12, 623-630.
    Frangoul, H., Altshuler, D., Cappellini, M.D., Chen, Y.S., Domm, J., Eustace, B.K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., et al., 2021. CRISPR-Cas9 gene editing for sickle cell disease and b-thalassemia. N. Engl. J. Med. 384, e91.
    Freed, D., Pan, R., Aldana, R., 2018. TNscope:accurate detection of somatic mutations with haplotype-based variant candidate detection and machine learning filtering. bioRxiv. https://doi.org/10.1101/250647.
    García-Nieto, P.E., Morrison, A.J., Fraser, H.B., 2019. The somatic mutation landscape of the human body. Genome Biol. 20, 298.
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A T to G C in genomic DNA without DNA cleavage. Nature 551, 464-471.
    Gillmore, J.D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M.L., Seitzer, J., O'Connell, D., Walsh, K.R., Wood, K., et al., 2021. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 1721-1722.
    Grünewald, J., Zhou, R., Lareau, C.A., Garcia, S.P., Iyer, S., Miller, B.R., Langner, L.M., Hsu, J.Y., Aryee, M.J., Joung, J.K., 2020. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861-864.
    Güell, M., Yang, L., Church, G.M., 2014. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30, 2968-2970.
    Guo, J., Shi, C., Chen, X., Wang, O., Liu, P., Yang, H., Xu, X., Zhang, W., Zhu, H., 2021. stLFRsv:a germline structural variant analysis pipeline using co-barcoded reads. Front. Genet. 12, 636239.
    Huang, W., Li, L., Myers, J.R., Marth, G.T., 2012. ART:a next-generation sequencing read simulator. Bioinformatics 28, 593-594.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A programmable dual-RNAeguided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T., Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376.
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
    Labun,K.,Guo,X.,Chavez,A.,Church,G.,Gagnon,J.A.,Valen,E.,2019.Accurateanalysis of genuine CRISPR editing events with ampliCan. Genome Res. 29, 843-847.
    Landrum, M.J., Lee, J.M., Benson, M., Brown, G.R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., et al., 2018. ClinVar:improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062-D1067.
    Li, H., 2018. Minimap2:pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-3100.
    Liu, J.J., Orlova, N., Oakes, B.L., Ma, E., Spinner, H.B., Baney, K.L., Chuck, J., Tan, D., Knott, G.J., Harrington, L.B., et al., 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218-223.
    Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., Wang, K., 2019. HiTOM:a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci. China Life Sci. 62, 1-7.
    Lu, Y., Xue, J., Deng, T., Zhou, X., Yu, K., Deng, L., Huang, M., Yi, X., Liang, M., Wang, Y., et al., 2020. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat. Med. 26, 732-740.
    Newby, G.A., Yen, J.S., Woodard, K.J., Mayuranathan, T., Lazzarotto, C.R., Li, Y., Sheppard-Tillman, H., Porter, S.N., Yao, Y., Mayberry, K., et al., 2021. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295-302.
    Park, J., Lim, K., Kim, J.S., Bae, S., 2017. Cas-analyzer:an online tool for assessing genome editing results using NGS data. Bioinformatics 33, 286-288.
    Pausch, P., Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C.A., Li, Z., Cress, B.F., Knott, G.J., Jacobsen, S.E., Banfield, J.F., Doudna, J.A., 2020. CRISPRCasF from huge phages is a hypercompact genome editor. Science 369, 333-337.
    Pinello, L., Canver, M.C., Hoban, M.D., Orkin, S.H., Kohn, D.B., Bauer, D.E., Yuan, G.C., 2016. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695-697.
    Poplin, R., Ruano-Rubio, V., DePristo, M.A., Fennell, T.J., Carneiro, M.O., Van der Auwera, G.A., Kling, D.E., Gauthier, L.D., Levy-Moonshine, A., Roazen, D., et al., 2018. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. https://doi.org/10.1101/201178.
    Sedlazeck, F.J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., Von Haeseler, A., Schatz, M.C., 2018. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461-468.
    Tsai, S.Q., Nguyen, N.T., Malagon-Lopez, J., Topkar, V.V., Aryee, M.J., Joung, J.K., 2017. CIRCLE-seq:a highly sensitive in vitro screen for genome-wide CRISPReCas9 nuclease off-targets. Nat. Methods 14, 607-614.
    Varshney, G.K., Pei, W., LaFave, M.C., Idol, J., Xu, L., Gallardo, V., Carrington, B., Bishop, K., Jones, M., Li, M., et al., 2015. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25, 1030-1042.
    Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
    Wu, Y., Zhou, H., Fan, X., Zhang, Y., Zhang, M., Wang, Y., Xie, Z., Bai, M., Yin, Q., Liang, D., et al., 2015. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 25, 67-79.
    Xue, L.J., Tsai, C.J., 2015. AGEseq:analysis of genome editing by sequencing. Mol. Plant 8, 1428-1430.
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., Van Der Oost, J., Regev, A., et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
    Zook, J.M., Hansen, N.F., Olson, N.D., Chapman, L., Mullikin, J.C., Xiao, C., Sherry, S., Koren, S., Phillippy, A.M., Boutros, P.C., et al., 2020. A robust benchmark for detection of germline large deletions and insertions. Nat. Biotechnol. 38, 1347-1355.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (256) PDF downloads (21) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return