Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., et al., 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573.
|
Akcakaya, P., Bobbin, M.L., Guo, J.A., Malagon-Lopez, J., Clement, K., Garcia, S.P., Fellows, M.D., Porritt, M.J., Firth, M.A., Carreras, A., et al., 2018. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416-419.
|
Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
|
Bae, S., Park, J., Kim, J.S., 2014. Cas-OFFinder:a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475.
|
Bao, X.R., Pan, Y., Lee, C.M., Davis, T.H., Bao, G., 2021. Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nat. Protoc. 16, 10-26.
|
Benjamin, D., Sato, T., Cibulskis, K., Getz, G., Stewart, C., Lichtenstein, L., 2019.
|
Calling somatic SNVs and indels with Mutect2. bioRxiv. https://doi.org/10.1101/861054.
|
Clement, K., Rees, H., Canver, M.C., Gehrke, J.M., Farouni, R., Hsu, J.Y., Cole, M.A., Liu, D.R., Joung, J.K., Bauer, D.E., et al., 2019. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224-226.
|
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
|
Ewing, A.D., Houlahan, K.E., Hu, Y., Ellrott, K., Caloian, C., Yamaguchi, T.N., Bare, J.C., P'ng, C., Waggott, D., Sabelnykova, V.Y., et al., 2015. Combining tumor genome simulation with crowdsourcing to benchmark somatic singlenucleotide-variant detection. Nat. Methods 12, 623-630.
|
Frangoul, H., Altshuler, D., Cappellini, M.D., Chen, Y.S., Domm, J., Eustace, B.K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., et al., 2021. CRISPR-Cas9 gene editing for sickle cell disease and b-thalassemia. N. Engl. J. Med. 384, e91.
|
Freed, D., Pan, R., Aldana, R., 2018. TNscope:accurate detection of somatic mutations with haplotype-based variant candidate detection and machine learning filtering. bioRxiv. https://doi.org/10.1101/250647.
|
García-Nieto, P.E., Morrison, A.J., Fraser, H.B., 2019. The somatic mutation landscape of the human body. Genome Biol. 20, 298.
|
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A T to G C in genomic DNA without DNA cleavage. Nature 551, 464-471.
|
Gillmore, J.D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M.L., Seitzer, J., O'Connell, D., Walsh, K.R., Wood, K., et al., 2021. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 1721-1722.
|
Grünewald, J., Zhou, R., Lareau, C.A., Garcia, S.P., Iyer, S., Miller, B.R., Langner, L.M., Hsu, J.Y., Aryee, M.J., Joung, J.K., 2020. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861-864.
|
Güell, M., Yang, L., Church, G.M., 2014. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30, 2968-2970.
|
Guo, J., Shi, C., Chen, X., Wang, O., Liu, P., Yang, H., Xu, X., Zhang, W., Zhu, H., 2021. stLFRsv:a germline structural variant analysis pipeline using co-barcoded reads. Front. Genet. 12, 636239.
|
Huang, W., Li, L., Myers, J.R., Marth, G.T., 2012. ART:a next-generation sequencing read simulator. Bioinformatics 28, 593-594.
|
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A programmable dual-RNAeguided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
|
Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T., Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376.
|
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
|
Labun,K.,Guo,X.,Chavez,A.,Church,G.,Gagnon,J.A.,Valen,E.,2019.Accurateanalysis of genuine CRISPR editing events with ampliCan. Genome Res. 29, 843-847.
|
Landrum, M.J., Lee, J.M., Benson, M., Brown, G.R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., et al., 2018. ClinVar:improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062-D1067.
|
Li, H., 2018. Minimap2:pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-3100.
|
Liu, J.J., Orlova, N., Oakes, B.L., Ma, E., Spinner, H.B., Baney, K.L., Chuck, J., Tan, D., Knott, G.J., Harrington, L.B., et al., 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218-223.
|
Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., Wang, K., 2019. HiTOM:a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci. China Life Sci. 62, 1-7.
|
Lu, Y., Xue, J., Deng, T., Zhou, X., Yu, K., Deng, L., Huang, M., Yi, X., Liang, M., Wang, Y., et al., 2020. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat. Med. 26, 732-740.
|
Newby, G.A., Yen, J.S., Woodard, K.J., Mayuranathan, T., Lazzarotto, C.R., Li, Y., Sheppard-Tillman, H., Porter, S.N., Yao, Y., Mayberry, K., et al., 2021. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295-302.
|
Park, J., Lim, K., Kim, J.S., Bae, S., 2017. Cas-analyzer:an online tool for assessing genome editing results using NGS data. Bioinformatics 33, 286-288.
|
Pausch, P., Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C.A., Li, Z., Cress, B.F., Knott, G.J., Jacobsen, S.E., Banfield, J.F., Doudna, J.A., 2020. CRISPRCasF from huge phages is a hypercompact genome editor. Science 369, 333-337.
|
Pinello, L., Canver, M.C., Hoban, M.D., Orkin, S.H., Kohn, D.B., Bauer, D.E., Yuan, G.C., 2016. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695-697.
|
Poplin, R., Ruano-Rubio, V., DePristo, M.A., Fennell, T.J., Carneiro, M.O., Van der Auwera, G.A., Kling, D.E., Gauthier, L.D., Levy-Moonshine, A., Roazen, D., et al., 2018. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. https://doi.org/10.1101/201178.
|
Sedlazeck, F.J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., Von Haeseler, A., Schatz, M.C., 2018. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461-468.
|
Tsai, S.Q., Nguyen, N.T., Malagon-Lopez, J., Topkar, V.V., Aryee, M.J., Joung, J.K., 2017. CIRCLE-seq:a highly sensitive in vitro screen for genome-wide CRISPReCas9 nuclease off-targets. Nat. Methods 14, 607-614.
|
Varshney, G.K., Pei, W., LaFave, M.C., Idol, J., Xu, L., Gallardo, V., Carrington, B., Bishop, K., Jones, M., Li, M., et al., 2015. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25, 1030-1042.
|
Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
|
Wu, Y., Zhou, H., Fan, X., Zhang, Y., Zhang, M., Wang, Y., Xie, Z., Bai, M., Yin, Q., Liang, D., et al., 2015. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 25, 67-79.
|
Xue, L.J., Tsai, C.J., 2015. AGEseq:analysis of genome editing by sequencing. Mol. Plant 8, 1428-1430.
|
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., Van Der Oost, J., Regev, A., et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
|
Zook, J.M., Hansen, N.F., Olson, N.D., Chapman, L., Mullikin, J.C., Xiao, C., Sherry, S., Koren, S., Phillippy, A.M., Boutros, P.C., et al., 2020. A robust benchmark for detection of germline large deletions and insertions. Nat. Biotechnol. 38, 1347-1355.
|