5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 8
Aug.  2023
Turn off MathJax
Article Contents

Addition of the T5 exonuclease increases the prime editing efficiency in plants

doi: 10.1016/j.jgg.2023.03.008
Funds:

This work was supported by grants from the National Key Research and Development Program of China (2022YFF1002802), the National Natural Science Foundation of China (32170410), and the Science and Technology Innovation Young Talent Team of Shanxi Province (202204051001019).

  • Received Date: 2023-01-10
  • Accepted Date: 2023-03-03
  • Rev Recd Date: 2023-03-03
  • Publish Date: 2023-03-21
  • Prime editing (PE) is a versatile genome editing tool without the need for double-stranded DNA breaks or donor DNA templates, but is limited by low editing efficiency. We previously fused the M-MLV reverse transcriptase to the Cas9 nickase, generating the PE2 (v1) system, but the editing efficiency of this system is still low. Here we develop different versions of PE2 by adding the 50-to-30 exonuclease at different positions of the nCas9-M-MLV RT fusion protein. PE2 (v2), in which the T5 exonuclease fused to the N-terminus of the nCas9-MMLV fusion protein enhances prime editing efficiency of base substitutions, deletions, and insertions at several genomic sites by 1.7- to 2.9-fold in plant cells compared to PE2 (v1). The improved editing efficiency of PE2 (v2) is further confirmed by generating increased heritable prime edits in stable transgenic plants compared to the previously established PE-P1, PE-P2, and PPE systems. Using PE2 (v2), we generate herbicide-resistant rice by simultaneously introducing mutations causing amino acid substitutions at two target sites. The PE efficiency is further improved by combining PE2 (v2) and dualpegRNAs. Taken together, the increased genome editing efficiency of PE2 (v2) developed in this study may enhance the applications of PE in plants.
  • loading
  • Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    Chen, P.J., Hussmann, J.A., Yan, J., Knipping, F., Ravisankar, P., Chen, P.F., Chen, C., Nelson, J.W., Newby, G.A., Sahin, M., et al., 2021. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635-5652.
    Chen, R., Cao, Y., Liu, Y., Zhao, D., Li, J., Cheng, Z., Bi, C., Zhang, X., 2023. Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65. Nat. Commun. 14, 257.
    Chow, R.D., Chen, J.S., Shen, J., Chen, S., 2021. A web tool for the design of primeediting guide RNAs. Nat. Biomed. Eng. 5, 190-194.
    Doyle, J.J., Doyle, J.L., Doyle, J.A., Doyle, F.J., 1987. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19, 11-15.
    Garforth, S.J., Sayers, J.R., 1997. Structure-specific DNA binding by bacteriophage T5 5'-3' exonuclease. Nucleic Acids Res. 25, 3801-3807.
    Green, M.R., Sambrook, J., 2020. E. coli DNA polymerase I and the klenow fragment. Cold Spring Harb. Protoc. 2020, 100743.
    Hiei, Y., Komari, T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824-834.
    Hua, K., Jiang, Y., Tao, X., Zhu, J.K., 2020. Precision genome engineering in rice using prime editing system. Plant Biotechnol. J. 18, 2167-2169.
    Jiang, Y.Y., Chai, Y.P., Lu, M.H., Han, X.L., Lin, Q., Zhang, Y., Zhang, Q., Zhou, Y., Wang, X.C., Gao, C., et al., 2020. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21, 257.
    Kawai, K., Kaku, K., Izawa, N., Fukuda, A., Tanaka, Y., Shimizu, T., 2007. Functional analysis of transgenic rice plants expressing a novel mutated ALS gene of rice. J. Pestic. Sci. 32, 385-392.
    Kim, H.K., Yu, G., Park, J., Min, S., Lee, S., Yoon, S., Kim, H.H., 2021. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198-206.
    Li, H., Li, J., Chen, J., Yan, L., Xia, L., 2020. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol. Plant 13, 671-674.
    Li, Y., Li, W., Li, J., 2021. The CRISPR/Cas9 revolution continues:From base editing to prime editing in plant science. J. Genet. Genomics 48, 661-670.
    Li, J., Chen, L., Liang, J., Xu, R., Jiang, Y., Li, Y., Ding, J., Li, M., Qin, R., Wei, P., 2022. Development of a highly efficient prime editor 2 system in plants. Genome Biol. 23, 161.
    Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., et al., 2020. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582-585.
    Lin, Q., Jin, S., Zong, Y., Yu, H., Zhu, Z., Liu, G., Kou, L., Wang, Y., Qiu, J.L., Li, J., et al., 2021. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923-927.
    Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., Wang, K., 2019. HiTOM:a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci. China Life Sci. 62, 1-7.
    Liu, S., Duan, X., Peng, F., Wang, Y., Liu, Y., Wan, X., Zhang, J., Li, X., Sun, X., 2022. A tunable genome editing system of the prime editor mediated by dihydrofolate reductase. J. Genet. Genomics 50, 204-207.
    Nelson, J.W., Randolph, P.B., Shen, S.P., Everette, K.A., Chen, P.J., Anzalone, A.V., An, M., Newby, G.A., Chen, J.C., Hsu, A., et al., 2022. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402-410.
    Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395-2410.
    Song, M., Lim, J.M., Min, S., Oh, J.S., Kim, D.Y., Woo, J.S., Nishimasu, H., Cho, S.R., Yoon, S., Kim, H.H., 2021. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat. Commun. 12, 5617.
    Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., Chen, Q.J., 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14, 327.
    Xu, R., Li, J., Liu, X., Shan, T., Qin, R., Wei, P., 2020a. Development of plant primeediting systems for precise genome editing. Plant Commun. 1, 100043.
    Xu, W., Zhang, C., Yang, Y., Zhao, S., Kang, G., He, X., Song, J., Yang, J., 2020b. Versatile nucleotides substitution in plant using an improved prime editing system. Mol. Plant 13, 675-678.
    Xu, W., Yang, Y., Yang, B., Krueger, C.J., Xiao, Q., Zhao, S., Zhang, L., Kang, G., Wang, F., Yi, H., et al., 2022. A design optimized prime editor with expanded scope and capability in plants. Nat. Plants 8, 45-52.
    Yu, Q., Powles, S.B., 2014. Resistance to AHAS inhibitor herbicides:current understanding. Pest Manag. Sci. 70, 1340-1350.
    Zalatan, J.G., Lee, M.E., Almeida, R., Gilbert, L.A., Whitehead, E.H., La Russa, M., Tsai, J.C., Weissman, J.S., Dueber, J.E., Qi, L.S., et al., 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339-350.
    Zhang, Q., Yin, K., Liu, G., Li, S., Li, M., Qiu, J.L., 2020. Fusing T5 exonuclease with Cas9 and Cas12 a increases the frequency and size of deletion at target sites. Sci. China Life Sci. 63, 1918-1927.
    Zhuang, Y., Liu, J., Wu, H., Zhu, Q., Yan, Y., Meng, H., Chen, P.R., Yi, C., 2022. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat. Chem. Biol. 18, 29-37.
    Zong, Y., Liu, Y., Xue, C., Li, B., Li, X., Wang, Y., Li, J., Liu, G., Huang, X., Cao, X., et al., 2022. An engineered prime editor with enhanced editing efficiency in plants. Nat. Biotechnol. 40, 1394-1402.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (245) PDF downloads (34) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return