Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
|
Chen, P.J., Hussmann, J.A., Yan, J., Knipping, F., Ravisankar, P., Chen, P.F., Chen, C., Nelson, J.W., Newby, G.A., Sahin, M., et al., 2021. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635-5652.
|
Chen, R., Cao, Y., Liu, Y., Zhao, D., Li, J., Cheng, Z., Bi, C., Zhang, X., 2023. Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65. Nat. Commun. 14, 257.
|
Chow, R.D., Chen, J.S., Shen, J., Chen, S., 2021. A web tool for the design of primeediting guide RNAs. Nat. Biomed. Eng. 5, 190-194.
|
Doyle, J.J., Doyle, J.L., Doyle, J.A., Doyle, F.J., 1987. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19, 11-15.
|
Garforth, S.J., Sayers, J.R., 1997. Structure-specific DNA binding by bacteriophage T5 5'-3' exonuclease. Nucleic Acids Res. 25, 3801-3807.
|
Green, M.R., Sambrook, J., 2020. E. coli DNA polymerase I and the klenow fragment. Cold Spring Harb. Protoc. 2020, 100743.
|
Hiei, Y., Komari, T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824-834.
|
Hua, K., Jiang, Y., Tao, X., Zhu, J.K., 2020. Precision genome engineering in rice using prime editing system. Plant Biotechnol. J. 18, 2167-2169.
|
Jiang, Y.Y., Chai, Y.P., Lu, M.H., Han, X.L., Lin, Q., Zhang, Y., Zhang, Q., Zhou, Y., Wang, X.C., Gao, C., et al., 2020. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21, 257.
|
Kawai, K., Kaku, K., Izawa, N., Fukuda, A., Tanaka, Y., Shimizu, T., 2007. Functional analysis of transgenic rice plants expressing a novel mutated ALS gene of rice. J. Pestic. Sci. 32, 385-392.
|
Kim, H.K., Yu, G., Park, J., Min, S., Lee, S., Yoon, S., Kim, H.H., 2021. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198-206.
|
Li, H., Li, J., Chen, J., Yan, L., Xia, L., 2020. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol. Plant 13, 671-674.
|
Li, Y., Li, W., Li, J., 2021. The CRISPR/Cas9 revolution continues:From base editing to prime editing in plant science. J. Genet. Genomics 48, 661-670.
|
Li, J., Chen, L., Liang, J., Xu, R., Jiang, Y., Li, Y., Ding, J., Li, M., Qin, R., Wei, P., 2022. Development of a highly efficient prime editor 2 system in plants. Genome Biol. 23, 161.
|
Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., et al., 2020. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582-585.
|
Lin, Q., Jin, S., Zong, Y., Yu, H., Zhu, Z., Liu, G., Kou, L., Wang, Y., Qiu, J.L., Li, J., et al., 2021. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923-927.
|
Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., Wang, K., 2019. HiTOM:a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci. China Life Sci. 62, 1-7.
|
Liu, S., Duan, X., Peng, F., Wang, Y., Liu, Y., Wan, X., Zhang, J., Li, X., Sun, X., 2022. A tunable genome editing system of the prime editor mediated by dihydrofolate reductase. J. Genet. Genomics 50, 204-207.
|
Nelson, J.W., Randolph, P.B., Shen, S.P., Everette, K.A., Chen, P.J., Anzalone, A.V., An, M., Newby, G.A., Chen, J.C., Hsu, A., et al., 2022. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402-410.
|
Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395-2410.
|
Song, M., Lim, J.M., Min, S., Oh, J.S., Kim, D.Y., Woo, J.S., Nishimasu, H., Cho, S.R., Yoon, S., Kim, H.H., 2021. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat. Commun. 12, 5617.
|
Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., Chen, Q.J., 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14, 327.
|
Xu, R., Li, J., Liu, X., Shan, T., Qin, R., Wei, P., 2020a. Development of plant primeediting systems for precise genome editing. Plant Commun. 1, 100043.
|
Xu, W., Zhang, C., Yang, Y., Zhao, S., Kang, G., He, X., Song, J., Yang, J., 2020b. Versatile nucleotides substitution in plant using an improved prime editing system. Mol. Plant 13, 675-678.
|
Xu, W., Yang, Y., Yang, B., Krueger, C.J., Xiao, Q., Zhao, S., Zhang, L., Kang, G., Wang, F., Yi, H., et al., 2022. A design optimized prime editor with expanded scope and capability in plants. Nat. Plants 8, 45-52.
|
Yu, Q., Powles, S.B., 2014. Resistance to AHAS inhibitor herbicides:current understanding. Pest Manag. Sci. 70, 1340-1350.
|
Zalatan, J.G., Lee, M.E., Almeida, R., Gilbert, L.A., Whitehead, E.H., La Russa, M., Tsai, J.C., Weissman, J.S., Dueber, J.E., Qi, L.S., et al., 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339-350.
|
Zhang, Q., Yin, K., Liu, G., Li, S., Li, M., Qiu, J.L., 2020. Fusing T5 exonuclease with Cas9 and Cas12 a increases the frequency and size of deletion at target sites. Sci. China Life Sci. 63, 1918-1927.
|
Zhuang, Y., Liu, J., Wu, H., Zhu, Q., Yan, Y., Meng, H., Chen, P.R., Yi, C., 2022. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat. Chem. Biol. 18, 29-37.
|
Zong, Y., Liu, Y., Xue, C., Li, B., Li, X., Wang, Y., Li, J., Liu, G., Huang, X., Cao, X., et al., 2022. An engineered prime editor with enhanced editing efficiency in plants. Nat. Biotechnol. 40, 1394-1402.
|