[1] |
Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S, Schaefer E, Duvernois E, Grandjean O, Vantard M, Bouchez D et al., 2012. The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 24, 178-191.
|
[2] |
Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., Zhang, Q., 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, e1164-e1171.
|
[3] |
Huang, H., Ye, Y,. Song, W., Li, Q., Han, R., Wu, C., Wang, S., Yu, J., Liu, X., Fu, X., et al., 2022. Modulating the C-terminus of DEP1 synergistically enhances grain quality and yield in rice. J. Genet. Genomics. 49, 506-509.
|
[4] |
Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J., Fu, X., 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, e494-e497.
|
[5] |
Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI. 2006. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133, 4305-4314.
|
[6] |
Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., Shao, D., Xu, C., Li, X., Xiao, J., et al., 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, e1266-e1269.
|
[7] |
Liu, J., Chen, J., Zheng, X., Wu, F., Lin, Q., Heng, Y., Tian, P., Cheng, Z., Yu, X., Zhou, K., et al., 2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Native Plants 3, 17043.
|
[8] |
Liu, Q., Han, R.X., Wu, K., Zhang, J.Q., Ye, Y.F., Wang, S.S., Chen, J.F., Pan, Y.J., Li, Q., Xu, X.P., et al., 2018. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat. Commun. 9, 852.
|
[9] |
Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., Zhou, T., Lu, T., Zhu, J., Shangguan, Y., et al., 2016. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48, e447-e456.
|
[10] |
Spinner, L., Gadeyne, A., Belcram, K., Goussot, M., Moison, M., Duroc, Y., Eeckhout, D., De Winne, N., Schaefer, E., Van De Slijke, E., et al., 2013. A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 4, 1863.
|
[11] |
Sun, S., Wang, L., Mao, H., Shao, L., Li, X., Xiao, J., Ouyang, Y., Zhang, Q., 2018. A G-protein pathway determines grain size in rice. Nat. Commun. 9, 851.
|
[12] |
Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., Wang, Y., Chen, X., Zhang, Y., Gao, C., et al., 2015a. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, e949-e954.
|
[13] |
Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., Qian, Q., et al., 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, e950-e954.
|
[14] |
Wang, Y.X., Xiong, G.S., Hu, J., Jiang, L., Yu, H., Xu, J., Fang, Y.X., Zeng, L.J., Xu, E.B., Xu, J., et al., 2015b. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, e944-e948.
|
[15] |
Wu, W., Liu, X., Wang, M., Meyer, R.S., Luo, X., Ndjiondjop, M.N., Tan, L., Zhang, J., Wu, J., Cai, H., et al. 2017. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Native Plants 3, 17064.
|
[16] |
Xu, Q., Zhao, M., Wu, K., Fu, X., Liu, Q., 2016. Emerging insights into heterotrimeric G protein signaling in plants. J. Genet. Genomics 43, e495-e502.
|
[17] |
Yang, W., Xu, P., Zhang, J., Zhang, S., Li, Z., Yang, K., Chang, X., Li, Y. 2022. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice. J. Genet. Genomics. 49, 414-426.
|
[18] |
Zhan, P., Ma, S., Xiao, Z., Li, F., Wei, X., Lin, S., Wang, X., Ji, Z., Fu, Y., Pan, J., et al. 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. J. Genet. Genomics. 49, 405-413.
|
[19] |
Zhao, D.S., Li, Q.F., Zhang, C.Q., Zhang, C., Yang, Q.Q., Pan, L.X., Ren, X.Y., Lu, J., Gu, M.H., Liu Q.Q. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 9, 1240.
|