5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 4
Apr.  2023
Turn off MathJax
Article Contents

Nutritional geometry framework of sucrose taste in Drosophila

doi: 10.1016/j.jgg.2023.02.001
Funds:

This work was funded by the National Natural Science Foundation of China (31800993, 31970934), Natural Science of Foundation of Guangdong, China (2018B030306002), Science and Technology Innovation Committee of Shenzhen, China (201908073000449) to Q.P.W.

  • Received Date: 2022-11-15
  • Accepted Date: 2023-02-01
  • Rev Recd Date: 2023-01-27
  • Publish Date: 2023-04-30
  • Dietary protein (P) and carbohydrate (C) have a major impact on the sweet taste sensation. However, it remains unclear whether the balance of P and C influences the sweet taste sensitivity. Here, we use the nutritional geometry framework (NGF) to address the interaction of protein and carbohydrates on sweet taste using Drosophila as a model. Our results reveal that high-protein, low-carbohydrate (HPLC) diets sensitize to sweet taste and low-protein, high-carbohydrate (LPHC) diets desensitize sweet taste in both male and female flies. We further investigate the underlying mechanisms of the effects of two diets on sweet taste using RNA sequencing. When compared to the LPHC diet, the mRNA expression of genes involved in the metabolism of glycine, serine, and threonine is significantly upregulated in the HPLC diet group, suggesting these amino acids may mediate sweet taste perception. We further find that sweet sensitization occurs in flies fed with the LPHC diet supplemented with serine and threonine. Our study demonstrates that sucrose taste sensitivity is affected by the balance of dietary protein and carbohydrates possibly through changes in serine and threonine.
  • loading
  • [1]
    Aryal, B., Dhakal, S., Shrestha, B., Lee, Y., 2022. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr. Biol. 32, 1376-1386.
    [2]
    Bachmanov, A.A., Bosak, N.P., Floriano, W.B., Inoue, M., Li, X., Lin, C., Murovets, V.O., Reed, D.R., Zolotarev, V.A., Beauchamp, G.K., 2011. Genetics of sweet taste preferences. Flavour Fragrance J. 26, 286-294.
    [3]
    Bachmanov, A.A., Bosak, N.P., Glendinning, J.I., Inoue, M., Li, X., Manita, S., McCaughey, S.A., Murata, Y., Reed, D.R., Tordoff, M.G., Beauchamp, G.K., 2016. Genetics of amino acid taste and appetite. Adv. Nutr. 7, 806s-822s.
    [4]
    Bartolotto, C., 2015. Does consuming sugar and artificial sweeteners change taste preferences? Perm. J. 19, 81-84.
    [5]
    Berthoud, H.R., Zheng, H., 2012. Modulation of taste responsiveness and food preference by obesity and weight loss. Physiol. Behav. 107, 527-532.
    [6]
    Blass, E.M., Shah, A., 1995. Pain-reducing properties of sucrose in human newborns. Chem. Senses 20, 29-35.
    [7]
    Blass, E.M., Watt, L.B., 1999. Suckling-and sucrose-induced analgesia in human newborns. Pain 83, 611-623.
    [8]
    Burke, C.J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M.J., Das, G., Gohl, D., Silies, M., Certel, S., Waddell, S., 2012. Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492, 433-437.
    [9]
    Calcagnetti, D.J., Holtzman, S.G., 1992. Intake of sweet water attenuates restraint-stress-induced potentiation of morphine analgesia in rats. Brain Res. Bull. 29, 859-864.
    [10]
    Carbajal, R., Chauvet, X., Couderc, S., Olivier-Martin, M., 1999. Randomised trial of analgesic effects of sucrose, glucose, and pacifiers in term neonates. Br. Med. J. 319, 1393-1397.
    [11]
    Delompre, T., Guichard, E., Briand, L., Salles, C., 2019. Taste perception of nutrients found in nutritional supplements: a review. Nutrients 11, 2050.
    [12]
    Froelich, M., Lemes, S.A.F., Elias, M.P.S., Oliveira, A., Lisboa, P.C., Souza, J.R., Moura, E.G., Almeida, F.J.S., Pereira, M.P., Latorraca, M.Q., et al., 2022. Hyperphagia and hyperleptinemia induced by low-protein, high-carbohydrate diet is reversed at a later stage of development in rats. An. Acad. Bras. Cienc. 94, e20210902.
    [13]
    Ganguly, A., Dey, M., Scott, C., Duong, V.K., Arun Dahanukar, A., 2021. Dietary macronutrient imbalances lead to compensatory changes in peripheral taste via independent signaling pathways. J. Neurosci. 41, 10222-10246.
    [14]
    Gondivkar, S.M., Indurkar, A., Degwekar, S., Bhowate, R., 2009. Evaluation of gustatory function in patients with diabetes mellitus type 2. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 108, 876-880.
    [15]
    Hajnal, A., Covasa, M., Bello, N.T., 2005. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK-1 receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1675-R1686.
    [16]
    Hajnal, A., Norgren, R., Kovacs, P., 2009. Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann. N. Y. Acad. Sci. 1170, 347-364.
    [17]
    Hajnal, A., Smith, G.P., Norgren, R., 2004. Oral sucrose stimulation increases accumbens dopamine in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R31-R37.
    [18]
    Hardikar, S., Hochenberger, R., Villringer, A., Ohla, K., 2017. Higher sensitivity to sweet and salty taste in obese compared to lean individuals. Appetite 111, 158-165.
    [19]
    Hew, J.J., Parungao, R.J., Tsai, K.H., Shi, H., Ma, D., Nicholls, C., Li, Z., Solon-Biet, S.M., D'Souza, M., Le Couteur, D.G., et al., 2020. Geometric framework reveals that a moderate protein, high carbohydrate intake is optimal for severe burn injury in mice. Br. J. Nutr. 123, 1056-1067.
    [20]
    Hu, Y., Liu, Z.Y., Li, S.S., Li, A.Q., Wang, Q.P., 2022. AMPK controls sucrose taste sensitization in Drosophila. J. Genet. Gen.
    [21]
    Huang, Y.J., Maruyama, Y., Lu, K.S., Pereira, E., Plonsky, I., Baur, J.E., Wu, D., Roper, S.D., 2005. Using biosensors to detect the release of serotonin from taste buds during taste stimulation. Arch. Ital. Biol. 143, 87-96.
    [22]
    Hwang, L.D., Lin, C., Gharahkhani, P., Cuellar-Partida, G., Ong, J.S., An, J., Gordon, S.D., Zhu, G., MacGregor, S., Lawlor, D.A., et al., 2019. New insight into human sweet taste: a genome-wide association study of the perception and intake of sweet substances. Am. J. Clin. Nutr. 109, 1724-1737.
    [23]
    Inagaki, H.K., Panse, K.M., Anderson, D.J., 2014. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron 84, 806-820.
    [24]
    Ishimoto, H., Tanimura, T., 2004. Molecular neurophysiology of taste in Drosophila. Cell. Mol. Life Sci. 61, 10-18.
    [25]
    Jayasinghe, S.N., Kruger, R., Walsh, D.C.I., Cao, G., Rivers, S., Richter, M., Breier, B.H., 2017. Is sweet taste perception associated with sweet food liking and intake? Nutrients 9, 750.
    [26]
    Jensen, K., McClure, C., Priest, N.K., Hunt, J., 2015. Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14, 605-615.
    [27]
    Jiang, P., Cui, M., Zhao, B., Snyder, L.A., Benard, L.M., Osman, R., Max, M., Margolskee, R.F., 2005. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J. Biol. Chem. 280, 34296-34305.
    [28]
    Kawai, M., Okiyama, A., Ueda, Y., 2002. Taste enhancements between various amino acids and IMP. Chem. Senses 27, 739-745.
    [29]
    Kawai, M., Sekine-Hayakawa, Y., Okiyama, A., Ninomiya, Y., 2012. Gustatory sensation of (L)-and (D)-amino acids in humans. Amino Acids 43, 2349-2358.
    [30]
    Le Couteur, D.G., Solon-Biet, S., Wahl, D., Cogger, V.C., Willcox, B.J., Willcox, D.C., Raubenheimer, D., Simpson, S.J., 2016. New horizons: dietary protein, ageing and the Okinawan ratio. Age Ageing 45, 443-447.
    [31]
    Lee, K.P., Simpson, S.J., Clissold, F.J., Brooks, R., Ballard, J.W., Taylor, P.W., Soran, N., Raubenheimer, D., 2008. Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc. Natl. Acad. Sci. U.S.A. 105, 2498-2503.
    [32]
    Liu, Q., Tabuchi, M., Liu, S., Kodama, L., Horiuchi, W., Daniels, J., Chiu, L., Baldoni, D., Wu, M.N., 2017. Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Science 356, 534-539.
    [33]
    May, C.E., Dus, M., 2021. Confection confusion: interplay between diet, taste, and nutrition. Trends Endocrinol. Metabol. 32, 95-105.
    [34]
    May, C.E., Rosander, J., Gottfried, J., Dennis, E., Dus, M., 2020. Dietary sugar inhibits satiation by decreasing the central processing of sweet taste. Elife 9, e54530.
    [35]
    May, C.E., Vaziri, A., Lin, Y.Q., Grushko, O., Khabiri, M., Wang, Q.P., Holme, K.J., Pletcher, S.D., Freddolino, P.L., Neely, G.G., et al., 2019. High dietary sugar reshapes sweet taste to promote feeding behavior in Drosophila melanogaster. Cell Rep. 27, 1675-1685.
    [36]
    McCluskey, L.P., He, L., Dong, G., Harris, R., 2020. Chronic exposure to liquid sucrose and dry sucrose diet have differential effects on peripheral taste responses in female rats. Appetite 145, 104499.
    [37]
    Melchior, J.C., Rigaud, D., Colas-Linhart, N., Petiet, A., Girard, A., Apfelbaum, M., 1991. Immunoreactive beta-endorphin increases after an aspartame chocolate drink in healthy human subjects. Physiol. Behav. 50, 941-944.
    [38]
    Oliveira-Maia, A.J., Roberts, C.D., Walker, Q.D., Luo, B., Kuhn, C., Simon, S.A., Nicolelis, M.A., 2011. Intravascular food reward. PLoS One 6, e24992.
    [39]
    Paoli, A., Cenci, L., Grimaldi, K.A., 2011. Effect of ketogenic Mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees. Nutr. J. 10, 112.
    [40]
    Pasquet, P., Frelut, M.L., Simmen, B., Hladik, C.M., Monneuse, M.O., 2007. Taste perception in massively obese and in non-obese adolescents. Int. J. Pediatr. Obes. 2, 242-248.
    [41]
    Pepino, M.Y., Finkbeiner, S., Beauchamp, G.K., Mennella, J.A., 2010. Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women. Obesity 18, 959-965.
    [42]
    Post, S., Tatar, M., 2016. Nutritional geometric profiles of Insulin/IGF expression in Drosophila melanogaster. PLoS One 11, e0155628.
    [43]
    Raubenheimer, D., Simpson, S.J., 2016. Nutritional ecology and human health. Annu. Rev. Nutr. 36, 603-626.
    [44]
    Roitman, M.F., Wheeler, R.A., Tiesinga, P.H., Roitman, J.D., Carelli, R.M., 2010. Hedonic and nucleus accumbens neural responses to a natural reward are regulated by aversive conditioning. Learn. Mem. 17, 539-546.
    [45]
    Sartor, F., Donaldson, L.F., Markland, D.A., Loveday, H., Jackson, M.J., Kubis, H.P., 2011. Taste perception and implicit attitude toward sweet related to body mass index and soft drink supplementation. Appetite 57, 237-246.
    [46]
    Semaniuk, U.V., Gospodaryov, D.V., Feden'ko, K.M., Yurkevych, I.S., Vaiserman, A.M., Storey, K.B., Simpson, S.J., Lushchak, O., 2018. Insulin-like peptides regulate feeding preference and metabolism in Drosophila. Front. Physiol. 9, 1083.
    [47]
    Silva-Soares, N.F., Nogueira-Alves, A., Beldade, P., Mirth, C.K., 2017. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecol. 17, 21.
    [48]
    Simpson, S.J., James, S., Simmonds, M.S., Blaney, W.M., 1991. Variation in chemosensitivity and the control of dietary selection behaviour in the locust. Appetite 17, 141-154.
    [49]
    Simpson, S.J., Le Couteur, D.G., Raubenheimer, D., 2015. Putting the balance back in diet. Cell 161, 18-23.
    [50]
    Simpson, S.J., Le Couteur, D.G., Raubenheimer, D., Solon-Biet, S.M., Cooney, G.J., Cogger, V.C., Fontana, L., 2017. Dietary protein, aging and nutritional geometry. Ageing Res. Rev. 39, 78-86.
    [51]
    Simpson, S.J., Raubenheimer, D., Cogger, V.C., Macia, L., Solon-Biet, S.M., Le Couteur, D.G., George, J., 2018. The nutritional geometry of liver disease including non-alcoholic fatty liver disease. J. Hepatol. 68, 316-325.
    [52]
    Skrandies, W., Zschieschang, R., 2015. Olfactory and gustatory functions and its relation to body weight. Physiol. Behav. 142, 1-4.
    [53]
    Solon-Biet, S.M., McMahon, A.C., Ballard, J.W., Ruohonen, K., Wu, L.E., Cogger, V.C., Warren, A., Huang, X., Pichaud, N., Melvin, R.G., et al., 2014. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metabol. 19, 418-430.
    [54]
    Vaziri, A., Khabiri, M., Genaw, B.T., May, C.E., Freddolino, P.L., Dus, M., 2020. Persistent epigenetic reprogramming of sweet taste by diet. Sci. Adv. 6, eabc8492.
    [55]
    Wahl, D., Solon-Biet, S.M., Wang, Q.P., Wali, J.A., Pulpitel, T., Clark, X., Raubenheimer, D., Senior, A.M., Sinclair, D.A., Cooney, G.J., et al., 2018. Comparing the effects of low-protein and high-carbohydrate diets and caloric restriction on brain aging in mice. Cell Rep. 25, 2234-2243.
    [56]
    Wahl, D.R., Villinger, K., Konig, L.M., Ziesemer, K., Schupp, H.T., Renner, B., 2017. Healthy food choices are happy food choices: evidence from a real life sample using smartphone based assessments. Sci. Rep. 7, 17069.
    [57]
    Wang, Q.P., Lin, Y.Q., Lai, M.L., Su, Z., Oyston, L.J., Clark, T., Park, S.J., Khuong, T.M., Lau, M.T., Shenton, V., et al., 2020. PGC1α controls sucrose taste sensitization in Drosophila. Cell Rep. 31, 107480.
    [58]
    Wang, Q.P., Lin, Y.Q., Zhang, L., Wilson, Y.A., Oyston, L.J., Cotterell, J., Qi, Y., Khuong, T.M., Bakhshi, N., Planchenault, Y., et al., 2016. Sucralose promotes food intake through NPY and a neuronal fasting response. Cell Metabol. 24, 75-90.
    [59]
    Weiss, M.S., Hajnal, A., Czaja, K., Di Lorenzo, P.M., 2019. Taste responses in the nucleus of the solitary tract of awake obese rats are blunted compared with those in lean rats. Front. Integr. Neurosci. 13, 35.
    [60]
    Wise, P.M., Nattress, L., Flammer, L.J., Beauchamp, G.K., 2016. Reduced dietary intake of simple sugars alters perceived sweet taste intensity but not perceived pleasantness. Am. J. Clin. Nutr. 103, 50-60.
    [61]
    Yamamoto, T., Sako, N., Maeda, S., 2000. Effects of taste stimulation on beta-endorphin levels in rat cerebrospinal fluid and plasma. Physiol. Behav. 69, 345-350.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads (78) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return