5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 6
Jun.  2023
Turn off MathJax
Article Contents

Genomic and transcriptomic analyses enable the identification of important genes associated with subcutaneous fat deposition in Holstein cows

doi: 10.1016/j.jgg.2023.01.011
Funds:

The authors thank the Dairy Association of China (Beijing, China) for providing the pedigree datasets. The authors also thank the support of founding by the Key Research Project of Ningxia Hui Autonomous Region (2022BBF02017), the earmarked fund for CARS-36, and the Program for Changjiang Scholar and Innovation Research Team in University (IRT-15R62).

  • Received Date: 2022-10-07
  • Accepted Date: 2023-01-20
  • Rev Recd Date: 2023-01-18
  • Publish Date: 2023-02-03
  • Subcutaneous fat deposition has many important roles in dairy cattle, including immunological defense and mechanical protection. The main objectives of this study are to identify key candidate genes regulating subcutaneous fat deposition in high-producing dairy cows by integrating genomic and transcriptomic datasets. A total of 1654 genotyped Holstein cows are used to perform a genome-wide association study (GWAS) aiming to identify genes associated with subcutaneous fat deposition. Subsequently, weighted gene co-expression network analyses (WGCNA) are conducted based on RNA-sequencing data of 34 cows and cow yield deviations of subcutaneous fat deposition. Lastly, differentially expressed (DE) mRNA, lncRNA, and differentially alternative splicing genes are obtained for 12 Holstein cows with extreme and divergent phenotypes for subcutaneous fat deposition. Forty-six protein-coding genes are identified as candidate genes regulating subcutaneous fat deposition in Holstein cattle based on GWAS. Eleven overlapping genes are identified based on the analyses of DE genes and WGCNA. Furthermore, the candidate genes identified based on GWAS, WGCNA, and analyses of DE genes are significantly enriched for pathways involved in metabolism, oxidative phosphorylation, thermogenesis, fatty acid degradation, and glycolysis/gluconeogenesis pathways. Integrating all findings, the NID2, STARD3, UFC1, DEDD, PPP1R1B, and USP21 genes are considered to be the most important candidate genes influencing subcutaneous fat deposition traits in Holstein cows. This study provides novel insights into the regulation mechanism underlying fat deposition in high-producing dairy cows, which will be useful when designing management and breeding strategies.
  • loading
  • [1]
    Alexandre, P.A., Kogelman, L.J.A., Santana, M.H.A., Passarelli, D., Pulz, L.H., Fantinato-Neto, P., Silva, P. L., Leme, P.R., Strefezzi, R.F., Coutinho, L.L. et al., 2015. Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics. 16, 1-13.
    [2]
    Bewley, J.M., Schutz, M.M., 2008. An interdisciplinary review of body condition scoring for dairy cattle. The Professional Animal Scientist. 24, 507-529.
    [3]
    Bong, J.J., Cho, K.K., Baik, M., 2009. Comparison of gene expression profiling between bovine subcutaneous and intramuscular adipose tissues by serial analysis of gene expression. Cell Biol. Int. 34, 125-133.
    [4]
    Borthwick, F., Allen, A.M., Taylor, J.M., Graham, A., 2010. Overexpression of STARD3 in human monocyte/macrophages induces an anti-atherogenic lipid phenotype. Clin. Sci. 119, 265-272.
    [5]
    Brown, D.J., Wolcott, M.L., Crook, B.J., 2000. The measurement of skin thickness in Merino sheep using real time ultrasound. Wool Technol. Sheep Breed. 48, 269-276.
    [6]
    Browning, B.L., Browning, S.R., 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210-223.
    [7]
    Bruckmaier, R.M., Gregoretti, L., Jans, F., Faissler, D., Blum, J.W., 1998. Longissimus dorsi muscle diameter, backfat thickness, body condition scores and skinfold values related to metabolic and endocrine traits in lactating dairy cows fed crystalline fat or free fatty acids. J. Vet. Med. Ser. A-Physiol. Pathol. Clin. Med. 45, 397-410.
    [8]
    Buttchereit, N., Stamer, E., Junge, W., Thaller, G., 2011. Short communication: Genetic relationships among daily energy balance, feed intake, body condition score, and fat to protein ratio of milk in dairy cows. J. Dairy Sci. 94, 1586-1591.
    [9]
    Caetano, S.L., Savegnago, R.P., Boligon, A.A., Ramos, S.B., Chud, T.C.S., Lobo, R.B., Munari, D.P., 2013. Estimates of genetic parameters for carcass, growth and reproductive traits in Nellore cattle. Livest. Sci. 155, 1-7.
    [10]
    Ceacero, T.M., Mercadante, M.E., Cyrillo, J.N., Canesin, R.C., Bonilha, S.F., de Albuquerque, L.G., 2016. Phenotypic and genetic correlations of feed efficiency traits with growth and carcass traits in Nellore cattle selected for postweaning weight. PLOS ONE. 11, e161366.
    [11]
    Dai, W., Sun, Y., Jiang, Z., Du, K., Xia, N., Zhong, G., 2020. Key genes associated with non-alcoholic fatty liver disease and acute myocardial infarction. Med. Sci. Monitor. 26, e922492.
    [12]
    de Oliveira, P.S.N., Cesar, A.S.M., Do Nascimento, M.L., Chaves, A.S., Tizioto, P.C., Tullio, R.R., Lanna, D.P.D., Rosa, A.N., Sonstegard, T.S., Mourao, G.B., et al., 2014. Identification of genomic regions associated with feed efficiency in Nelore cattle. BMC Genet. 15, 100.
    [13]
    Devlin, B., Roeder, K., 1999. Genomic control for association studies. Biometrics. 55, 997-1004.
    [14]
    Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15-21.
    [15]
    Du, L., Li, K., Chang, T., An, B., Liang, M., Deng, T., Cao, S., Du, Y., Cai, W., Gao, X., et al., 2022. Integrating genomics and transcriptomics to identify candidate genes for subcutaneous fat deposition in beef cattle. Genomics. 114, 110406.
    [16]
    Edmonson, A.J., Lean, I.J., Weaver, L.D., Farver, T., Webster, G., 1989. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 72, 68-78.
    [17]
    Etherington, G.J., Ramirez-Gonzalez, R.H., Maclean, D., 2015. Bio-Samtools 2: A package for analysis and visualization of sequence and alignment data with SAMtools in Ruby. Bioinformatics. 31, 2565-2567.
    [18]
    Fatima, A., Connaughton, R.M., Weiser, A., Murphy, A.M., O'Grada, C., Ryan, M., Brennan, L., O'Gaora, P., Roche, H.M., 2018. Weighted gene co-expression network analysis identifies gender specific modules and hub genes related to metabolism and inflammation in response to an acute lipid challenge. Mol. Nutr. Food Res. 62, 1700388.
    [19]
    Gong, Y., He, J., Li, B., Xiao, Y., Zeng, Q., Xu, K., Duan, Y., He, J., Ma, H., 2021. Integrated analysis of lncRNA and mRNA in subcutaneous adipose tissue of Ningxiang pig. Biology-Basel. 10, 726.
    [20]
    Guo, Y., Zhang, X., Huang, W., Miao, X., 2017. Identification and characterization of differentially expressed miRNAs in subcutaneous adipose between Wagyu and Holstein cattle. Sci Rep. 7, 44026.
    [21]
    Herdt, T.H., 1991. Relationship of fat metabolism to health and performance in dairy cattle. The Bovine Practitioner. 26, 92-95.
    [22]
    Hishikawa, D., Hong, Y.H., Roh, S.G., Miyahara, H., Nishimura, Y., Tomimatsu, A., Tsuzuki, H., Gotoh, C., Kuno, M., Choi, K.C. et al., 2005. Identification of genes expressed differentially in subcutaneous and visceral fat of cattle, pig, and mouse. Physiol. Genomics. 21, 343-350.
    [23]
    Huang, W., Guo, Y., Du, W., Zhang, X., Li, A., Miao, X., 2017. Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and Holstein cattle. Sci Rep. 7, 5278.
    [24]
    Jiang, R., Li, H., Huang, Y., Lan, X., Lei, C., Chen, H., 2020. Transcriptome profiling of lncRNA related to fat tissues of Qinchuan cattle. Gene. 742, 144587.
    [25]
    Kang, Y., Yang, D., Kong, L., Hou, M., Meng, Y., Wei, L., Gao, G., 2017. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 45, W12-W16.
    [26]
    Keogh, K., Kenny, D.A., Cormican, P., Kelly, A.K., Waters, S.M., 2016. Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of hepatic tissue in cattle. BMC Genomics. 17, 244.
    [27]
    Kidder, L., 2015. Gene set enrichment analysis using single nucleotide polymorphisms to identify genes associated with residual feed intake in cattle. Washington State University. Pullman, Whitman County.
    [28]
    Kigoshi, H., Kawaguchi, F., Oyama, K., Mannen, H., Sasazaki, S., Graduate, S.O.A.S., Laboratory, O.A.B.A., Food, R.E.R.C., Kobe, U., 2019. Effect of STARD3 gene polymorphism on carcass traits and fatty acid composition in Japanese Black cattle. The Journal of Animal Genetics. 47, 37-45.
    [29]
    Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 12, 357-360.
    [30]
    Kim, J.J., Farnir, F., Savell, J., Taylor, J.F., 2003. Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. J. Anim. Sci. 81, 1933-1942.
    [31]
    Kulyte, A., Lundback, V., Arner, P., Strawbridge, R.J., Dahlman, I., 2022. Shared genetic loci for body fat storage and adipocyte lipolysis in humans. Sci Rep. 12, 3666.
    [32]
    Langfelder, P., Horvath, S., 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9, 559.
    [33]
    Larsen, M.C., Lee, J., Jorgensen, J.S., Jefcoate, C.R., 2020. STARD1 functions in mitochondrial cholesterol metabolism and nascent HDL formation. Gene expression and molecular mRNA imaging show novel splicing and a 1:1 mitochondrial association. Front. Endocrinol. 11, 559674.
    [34]
    Li, A., Zhang, J., Zhou, Z., 2014. PLEK: A tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics. 15, 311.
    [35]
    Li, X., Zhao, Q., Qi, J., Wang, W., Zhang, D., Li, Z., Qin, C., 2018. lncRNA Ftx promotes aerobic glycolysis and tumor progression through the PPARγ pathway in hepatocellular carcinoma. Int. J. Oncol. 53, 551-566.
    [36]
    Li, Y.I., Knowles, D.A., Humphrey, J., Barbeira, A.N., Dickinson, S.P., Im, H.K., Pritchard, J.K., 2017. Annotation-free quantification of RNA splicing using LeafCutter. Nature Genet. 50, 151-158.
    [37]
    Liao, Y., Smyth, G.K., Shi, W., 2014. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930.
    [38]
    Lindholm-Perry, A.K., Freetly, H.C., Oliver, W.T., Rempel, L.A., Keel, B.N., 2020. Genes associated with body weight gain and feed intake identified by meta-analysis of the mesenteric fat from crossbred beef steers. PLOS ONE. 15, e227154.
    [39]
    Liu, T., Feng, H., Yousuf, S., Xie, L., Miao, X., 2022. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in Duolang and Small Tail Han sheep. Sci Rep. 12, 11157.
    [40]
    Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. Plos Genet. 12, e1005767.
    [41]
    Liu, X., Liu, K., Shan, B., Wei, S., Li, D., Han, H., Wei, W., Chen, J., Liu, H., Zhang, L., 2018. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. J. Anim. Sci. Biotechnol. 9, 76.
    [42]
    Liu, Y., Yu, Y., Ao, H., Zhang, F., Zhao, X., Liu, H., Shi, Y., Xing, K., Wang, C., 2021. Identification of long non-coding RNAs involved in porcine fat deposition using two high-throughput sequencing methods. Genes. 12, 1374.
    [43]
    Madsen, P., Sorensen, P., Su, G., Damgaard, L. H., Thomsen, H., Labouriau, R., 2006. DMU-A package for analyzing multivariate mixed models. 8th World Congr. Genet.Appl. Livest. Prod., Belo Horizonte, Brazil.
    [44]
    Malheiros, J.M., Balsassini, W.A., Dias, V.A.D., Silva, J.A.I.V., Curi, R.A., Chardulo, L.A.L., 2015. Chemical and sensory meat characteristics of Nellore cattle (Bos indicus) finished with different levels of backfat thickness in the longissimus thoracis muscle. Boletim de industria animal. 72, 341-348.
    [45]
    Mann, S., 2022. Symposium review: The role of adipose tissue in transition dairy cows: Current knowledge and future opportunities. J. Dairy Sci. 105, 3687-3701.
    [46]
    Martins, R., Machado, P.C., Pinto, L., Silva, M.R., Schenkel, F.S., Brito, L.F., Pedrosa, V.B., 2021. Genome-wide association study and pathway analysis for fat deposition traits in Nellore cattle raised in pasture-based systems. J. Anim. Breed. Genet. 138, 360-378.
    [47]
    Mckenna, C., Porter, R.K., Keogh, K.A., Waters, S.M., Mcgee, M., Kenny, D.A., 2018. Residual feed intake phenotype and gender affect the expression of key genes of the lipogenesis pathway in subcutaneous adipose tissue of beef cattle. J. Anim. Sci. Biotechnol. 9, 1-10.
    [48]
    Medeiros De Oliveira Silva, R., Bonvino Stafuzza, N., de Oliveira Fragomeni, B., Miguel Ferreira De Camargo, G., Matos Ceacero, T., Noely Dos Santos Goncalves Cyrillo, J., Baldi, F., Augusti Boligon, A., Zerlotti Mercadante, M.E., Lino Lourenco, D., et al., 2017. Genome-wide association study for carcass traits in an experimental Nelore cattle population. PLOS ONE. 12, e169860.
    [49]
    Mehtio, T., Mantysaari, P., Negussie, E., Leino, A.M., Poso, J., Mantysaari, E.A., Lidauer, M.H., 2020. Genetic correlations between energy status indicator traits and female fertility in primiparous Nordic Red dairy cattle. Animal. 14, 1588-1597.
    [50]
    Mizoguchi, Y., Hirano, T., Itoh, T., Aso, H., Takasuga, A., Sugimoto, Y., Watanabe, T., 2010. Differentially expressed genes during bovine intramuscular adipocyte differentiation profiled by serial analysis of gene expression. Anim. Genet. 41, 436-441.
    [51]
    Moe, P.W., 1981. Energy metabolism of dairy cattle. J. Dairy Sci. 64, 1120-1139.
    [52]
    Mokry, F.B., Higa, R.H., de Alvarenga, M.M., Oliveira, D.L.A., Meirelles, S.L., Barbosa, D.S.M., Cardoso, F.F., Morgado, D.O.M., Urbinati, I., Meo, N.S., et al., 2013. Genome-wide association study for backfat thickness in Canchim beef cattle using random forest approach. BMC Genet. 14, 47.
    [53]
    Moradi, M.H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K.G., Brauning, R., Mcewan, J.C., 2022. Hitchhiking mapping of candidate regions associated with fat deposition in Iranian thin and fat tail sheep breeds suggests new insights into molecular aspects of fat tail selection. Animals. 12, 1423.
    [54]
    Moreno-Indias, I., Tinahones, F.J., 2015. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. J. Diabetes Res. 2015, 970375.
    [55]
    Mota, L., Lopes, F.B., Fernandes, J.G., Rosa, G., Magalhaes, A., Carvalheiro, R., Albuquerque, L.G., 2020. Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers. Sci Rep 10, 6481.
    [56]
    Nicholson, M.J., Little, D.A., 1989. A note on the usefulness of skinfold thickness v. condition score for estimating body fat content in Boran cattle. Animal Production. 48, 234-236.
    [57]
    Nolte, W., Weikard, R., Brunner, R.M., Albrecht, E., Hammon, H.M., Reverter, A., Kuhn, C., 2019. Biological network approach for the identification of regulatory long non-coding RNAs associated with metabolic efficiency in cattle. Front. Genet. 10, 1130.
    [58]
    Ortega, M.S., Denicol, A.C., Cole, J.B., Null, D.J., Taylor, J.F., Schnabel, R.D., Hansen, P.J., 2017. Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows. J. Dairy Sci. 100, 3725-3734.
    [59]
    Patel, R.K., Jain, M., 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLOS ONE. 7, e30619.
    [60]
    Pertea, G., Pertea, M., 2020. GFF Utilities: GffRead and GffCompare. F1000Res. 9, 304.
    [61]
    Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T., Mendell, J.T., Salzberg, S.L., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295.
    [62]
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., et al., 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
    [63]
    Quinlan, A. R., Hall, I. M., 2010. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841-842.
    [64]
    Ramayo-Caldas, Y., Ballester, M., Sanchez, J.P., Gonzalez-Rodriguez, O., Revilla, M., Reyer, H., Wimmers, K., Torrallardona, D., Quintanilla, R., 2018. Integrative approach using liver and duodenum RNA-Seq data identifies candidate genes and pathways associated with feed efficiency in pigs. Sci Rep. 8, 558.
    [65]
    Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabksi, A.L., 2002. Hierarchical organization of modularity in metabolic networks. Science. 297, 1551-1555.
    [66]
    Roche, J.R., Friggens, N.C., Kay, J.K., Fisher, M.W., Stafford, K.J., Berry, D.P., 2009. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 92, 5769-5801.
    [67]
    Serao, N.V., Gonzalez-Pena, D., Beever, J.E., Faulkner, D.B., Southey, B.R., Rodriguez-Zas, S.L., 2013. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle. BMC Genet. 14, 94.
    [68]
    Sheng, X., Ni, H., Liu, Y., Li, J., Zhang, L., Guo, Y., 2014. RNA-seq analysis of bovine intramuscular, subcutaneous and perirenal adipose tissues. Mol. Biol. Rep. 41, 1631-1637.
    [69]
    Silva-Vignato, B., Coutinho, L.L., Poleti, M.D., Cesar, A., Moncau, C.T., Regitano, L., Balieiro, J., 2019. Gene co-expression networks associated with carcass traits reveal new pathways for muscle and fat deposition in Nelore cattle. BMC Genomics. 20, 32.
    [70]
    Stambuk, C.R., Staiger, E.A., Heins, B.J., Huson, H.J., 2020. Exploring physiological and genetic variation of digital cushion thickness in Holstein and Jersey cows and bulls. J. Dairy Sci. 103, 9177-9194.
    [71]
    Sun, C., Kovacs, P., Guiu-Jurado, E., 2021. Genetics of body fat distribution: Comparative analyses in populations with European, Asian and African ancestries. Genes. 12, 841.
    [72]
    Sun, L., Luo, H., Bu, D., Zhao, G., Yu, K., Zhang, C., Liu, Y., Chen, R., Zhao, Y., 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 41, e166.
    [73]
    Taniguchi, M., Guan, L.L., Basarab, J.A., Dodson, M.V., Moore, S.S., 2008. Comparative analysis on gene expression profiles in cattle subcutaneous fat tissues. Comp. Biochem. Physiol. D-Genomics Proteomics. 3, 251-256.
    [74]
    Thorup, V.M., Edwards, D., Friggens, N.C., 2012. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. J. Dairy Sci. 95, 1784-1793.
    [75]
    Tran, T.T., Kahn, C.R., 2010. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat. Rev. Endocrinol. 6, 195-213.
    [76]
    Vanraden, P.M., Van Tassell, C.P., Wiggans, G.R., Sonstegard, T.S., Schnabel, R.D., Taylor, J.F., Schenkel, F.S., 2009. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92, 16-24.
    [77]
    Vanraden, P.M., Wiggans, G.R., 1991. Derivation, calculation, and use of national animal model information. J. Dairy Sci. 74, 2737-2746.
    [78]
    Varet, H., Brillet-Gueguen, L., Coppee, J.Y., Dillies, M.A., 2016. SARTools: A DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLOS ONE. 11, e157022.
    [79]
    Veerkamp, R.F., Coffey, M., Berry, D., de Haas, Y., Strandberg, E., Bovenhuis, H., Calus, M., Wall, E., 2012. Genome-wide associations for feed utilisation complex in primiparous Holstein-Friesian dairy cows from experimental research herds in four European countries. Animal. 6, 1738-1749.
    [80]
    Wang, L., Park, H.J., Dasari, S., Wang, S., Kocher, J., Li, W., 2013. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 41, e74.
    [81]
    Wang, L., Xie, Y., Chen, W., Zhang, Y., Zeng, Y., 2021. The role of long noncoding RNAs in livestock adipose tissue deposition - A review. Anim. Biosci. 34, 1089-1099.
    [82]
    Wathes, D.C., Clempson, A.M., Pollott, G.E., 2012. Associations between lipid metabolism and fertility in the dairy cow. Reprod. Fertil. Dev. 25, 48-61.
    [83]
    Wildman, E.E., Jones, G.M., Wagner, P.E., Boman, R.L., Troutt, H.F., Lesch, T.N., 1982. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci. 65, 495-501.
    [84]
    Wu, H., Zhong, Z., Wang, A., Yuan, C., Ning, K., Hu, H., Wang, C., Yin, X., 2020. LncRNA FTX represses the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via regulating the M1/M2 polarization of Kupffer cells. Cancer Cell Int. 20, 266.
    [85]
    Xing, K., Liu, H., Zhang, F., Liu, Y., Shi, Y., Ding, X., Wang, C., 2021. Identification of key genes affecting porcine fat deposition based on co-expression network analysis of weighted genes. J. Anim. Sci. Biotechnol. 12, 100.
    [86]
    Yu, S., Lee, S., Kang, M., Jeong, H., Sang, B., Jeon, J., Lee, J., 2009. Identification of differentially expressed genes between preadipocytes and adipocytes using affymetrix Bovine genome array. J. Anim. Sci. Technol. 51, 443-452.
    [87]
    Zhang, H., Liu, A., Li, X., Xu, W., Shi, R., Luo, H., Su, G., Dong, G., Guo, G., Wang, Y., 2019. Genetic analysis of skinfold thickness and its association with body condition score and milk production traits in Chinese Holstein population. J. Dairy Sci. 102, 2347-2352.
    [88]
    Zhang, H., Chang, Y., Mu, B., Wang, K., Yang, M., Wang, L., Ma, L., Ning, J., Guo, G., Wang, Y., 2021. Genetic analysis on skinfold thickness and body condition score traits in Holstein cows. Acta Veterinaria et Zootechnica Sinica 52, 3089-3098.
    [89]
    Zhou, X., Gao, H., Guo, Y., Chen, Y., Ruan, X.Z., 2018. Knocking down Stard3 decreases adipogenesis with decreased mitochondrial ROS in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 504, 387-392.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (258) PDF downloads (34) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return