5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 5
May  2023
Turn off MathJax
Article Contents

Decoding transcriptional regulation via a human gene expression predictor

doi: 10.1016/j.jgg.2023.01.006
Funds:

The authors thank the USTC Supercomputing Center and USTC School of Life Sciences Bioinformatics Center for providing the computing resources. This work was supported by grants from the National Natural Science Foundation of China (31770268), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA24010303), the Fundamental Research Funds for the Central Universities (WK2070000091), and University of Science and Technology of China (Start-up fund to S.M.).

  • Received Date: 2022-09-02
  • Accepted Date: 2023-01-10
  • Rev Recd Date: 2023-01-04
  • Publish Date: 2023-01-21
  • Transcription factors (TFs) regulate cellular activities by controlling gene expression, but a predictive model describing how TFs quantitatively modulate human transcriptomes is lacking. We construct a universal human gene expression predictor named EXPLICIT-Human and utilize it to decode transcriptional regulation. Using the expression of 1613 TFs, the predictor reconstitutes highly accurate transcriptomes for samples derived from a wide range of tissues and conditions. The broad applicability of the predictor indicates that it recapitulates the quantitative relationships between TFs and target genes ubiquitous across tissues. Significant interacting TF-target gene pairs are extracted from the predictor and enable downstream inference of TF regulators for diverse pathways involved in development, immunity, metabolism, and stress response. A detailed analysis of the hematopoiesis process reveals an atlas of key TFs regulating the development of different hematopoietic cell lineages, and a portion of these TFs are conserved between humans and mice. The results demonstrate that our method is capable of delineating the TFs responsible for fate determination. Compared to other existing tools, EXPLICIT-Human shows a better performance in recovering the correct TF regulators.
  • loading
  • [1]
    Biswas, S., Kerner, K., Teixeira, P., Dangl, J.L., Jojic, V.,Wigge, P.A., 2017. Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes. Nat. Commun. 8, 15309.
    [2]
    Calvert, P.D., Krasnoperova, N.V., Lyubarsky, A.L., Isayama, T., Nicolo, M., Kosaras, B., Wong, G., Gannon, K.S., Margolskee, R.F., Sidman, R.L., et al., 2000. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proc. Natl. Acad. Sci. U. S. A. 97, 13913-13918.
    [3]
    Carmeliet, P.,Jain, R.K., 2011. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307.
    [4]
    Cheng, H., Khanna, H., Oh, E.C., Hicks, D., Mitton, K.P.,Swaroop, A., 2004. Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum. Mol. Genet. 13, 1563-1575.
    [5]
    Choi, J., Baldwin, T.M., Wong, M., Bolden, J.E., Fairfax, K.A., Lucas, E.C., Cole, R., Biben, C., Morgan, C., Ramsay, K.A., et al., 2018. Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic Acids Res. 47, D780-D785.
    [6]
    Di Vito, C., Mikulak, J.,Mavilio, D., 2019. On the Way to Become a Natural Killer Cell. Front. Immunol. 10, 15.
    [7]
    Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C.P., Jerby-Arnon, L., Marjanovic, N.D., Dionne, D., Burks, T., Raychowdhury, R., et al., 2016. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 167, 1853-1866 e1817.
    [8]
    Donner, Y., Feng, T., Benoist, C.,Koller, D., 2012. Imputing gene expression from selectively reduced probe sets. Nat. Methods 9, 1120-1125.
    [9]
    Consortium, E.P., 2004. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636-640.
    [10]
    Enright, A.J., Van Dongen, S.,Ouzounis, C.A., 2002. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575-1584.
    [11]
    Fontenot, J.D., Gavin, M.A.,Rudensky, A.Y., 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330-336.
    [12]
    Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranasic, D., et al., 2020. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87-d92.
    [13]
    Friedman, N., 2004. Inferring cellular networks using probabilistic graphical models. Science 303, 799-805.
    [14]
    Garrett-Sinha, L.A., Su, G.H., Rao, S., Kabak, S., Hao, Z., Clark, M.R.,Simon, M.C., 1999. PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity 10, 399-408.
    [15]
    Geng, H., Wang, M., Gong, J., Xu, Y.,Ma, S., 2021. An Arabidopsis expression predictor enables inference of transcriptional regulators for gene modules. Plant J. 107, 597-612.
    [16]
    Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., Khurana, E., Rozowsky, J., Alexander, R., et al., 2012. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91-100.
    [17]
    Consortium, G.T., Laboratory, D.A., Coordinating Center -Analysis Working, G., Statistical Methods groups-Analysis Working, G., Enhancing, G.g., Fund, N.I.H.C., Nih/Nci, Nih/Nhgri, Nih/Nimh, Nih/Nida, et al., 2017. Genetic effects on gene expression across human tissues. Nature 550, 204-213.
    [18]
    Gu, Z., Gu, L., Eils, R., Schlesner, M.,Brors, B., 2014. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811-2812.
    [19]
    Harrington, L.E. 2019. T-Cell Development, in: Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M. (Eds.), Clin. Immunol. Elsevier, London, pp. 119-125.e111.
    [20]
    Hattangadi, S.M., Wong, P., Zhang, L.B., Flygare, J.,Lodish, H.F., 2011. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118, 6258-6268.
    [21]
    Haury, A.C., Mordelet, F., Vera-Licona, P.,Vert, J.P., 2012. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst. Biol. 6, 145.
    [22]
    Heimberg, G., Bhatnagar, R., El-Samad, H.,Thomson, M., 2016. Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell Syst. 2, 239-250.
    [23]
    Hori, S., Nomura, T.,Sakaguchi, S., 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
    [24]
    Hu, H., Miao, Y.R., Jia, L.H., Yu, Q.Y., Zhang, Q.,Guo, A.Y., 2019. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 47, D33-d38.
    [25]
    Hu, H., Wang, B., Borde, M., Nardone, J., Maika, S., Allred, L., Tucker, P.W.,Rao, A., 2006. Foxp1 is an essential transcriptional regulator of B cell development. Nat. Immunol. 7, 819-826.
    [26]
    Huynh-Thu, V.A., Irrthum, A., Wehenkel, L.,Geurts, P., 2010. Inferring regulatory networks from expression data using tree-based methods. PLoS One 5, e12776.
    [27]
    Ivanov, II, McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., Cua, D.J.,Littman, D.R., 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133.
    [28]
    Ivashkiv, L.B.,Donlin, L.T., 2014. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36-49.
    [29]
    Jennings, R.E., Berry, A.A., Strutt, J.P., Gerrard, D.T.,Hanley, N.A., 2015. Human pancreas development. Development 142, 3126-3137.
    [30]
    Jiang, J., Lv, W., Ye, X., Wang, L., Zhang, M., Yang, H., Okuka, M., Zhou, C., Zhang, X., Liu, L., et al., 2013. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res. 23, 92-106.
    [31]
    Jolma, A., Yan, J., Whitington, T., Toivonen, J., Nitta, K.R., Rastas, P., Morgunova, E., Enge, M., Taipale, M., Wei, G., et al., 2013. DNA-binding specificities of human transcription factors. Cell 152, 327-339.
    [32]
    Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B.,Craig, R.W., 1991. PARTICIPATION OF P53 PROTEIN IN THE CELLULAR-RESPONSE TO DNA DAMAGE. Cancer Res. 51, 6304-6311.
    [33]
    Keenan, A.B., Torre, D., Lachmann, A., Leong, A.K., Wojciechowicz, M.L., Utti, V., Jagodnik, K.M., Kropiwnicki, E., Wang, Z.,Ma'ayan, A., 2019. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212-w224.
    [34]
    Kemmeren, P., Sameith, K., van de Pasch, L.A., Benschop, J.J., Lenstra, T.L., Margaritis, T., O'Duibhir, E., Apweiler, E., van Wageningen, S., Ko, C.W., et al., 2014. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157, 740-752.
    [35]
    Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al., 2016. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-97.
    [36]
    Kurotaki, D., Sasaki, H.,Tamura, T., 2017. Transcriptional control of monocyte and macrophage development. Int. Immunol. 29, 97-107.
    [37]
    Lachmann, A., Torre, D., Keenan, A.B., Jagodnik, K.M., Lee, H.J., Wang, L., Silverstein, M.C.,Ma’ayan, A., 2018. Massive mining of publicly available RNA-seq data from human and mouse. Nat. Commun. 9, 1366.
    [38]
    Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T.R.,Weirauch, M.T., 2018. The Human Transcription Factors. Cell 172, 650-665.
    [39]
    Lawrence, S.M., Corriden, R.,Nizet, V., 2018. The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol. Mol. Biol. Rev. 82.
    [40]
    Liao, J.C., Boscolo, R., Yang, Y.-L., Tran, L.M., Sabatti, C.,Roychowdhury, V.P., 2003. Network component analysis: Reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. U. S. A. 100, 15522.
    [41]
    Liu, P., Keller, J.R., Ortiz, M., Tessarollo, L., Rachel, R.A., Nakamura, T., Jenkins, N.A.,Copeland, N.G., 2003. Bcl11a is essential for normal lymphoid development. Nat. Immunol. 4, 525-532.
    [42]
    Ma, S., Gong, Q.,Bohnert, H.J., 2007. An Arabidopsis gene network based on the graphical Gaussian model. Genome Res. 17, 1614-1625.
    [43]
    Mack, E.A.,Pear, W.S., 2020. Transcription factor and cytokine regulation of eosinophil lineage commitment. Curr. Opin. Hematol. 27, 27-33.
    [44]
    Matsui, T., Kanai-Azuma, M., Hara, K., Matoba, S., Hiramatsu, R., Kawakami, H., Kurohmaru, M., Koopman, P.,Kanai, Y., 2006. Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J. Cell. Sci. 119, 3513-3526.
    [45]
    Miesfeld, J.B.,Brown, N.L., 2019. Eye organogenesis: A hierarchical view of ocular development. Curr. Top. Dev. Biol. 132, 351-393.
    [46]
    Mitchell, P.J.,Tjian, R., 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.
    [47]
    Mittrucker, H.W., Matsuyama, T., Grossman, A., Kundig, T.M., Potter, J., Shahinian, A., Wakeham, A., Patterson, B., Ohashi, P.S.,Mak, T.W., 1997. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540-543.
    [48]
    Montgomery, D.C., Peck, E.A.,Vining, G.G., 2012. Introduction to linear regression analysis, 5th ed. Wiley, Hoboken, NJ.
    [49]
    Murphy, T.L., Grajales-Reyes, G.E., Wu, X.D., Tussiwand, R., Briseno, C.G., Iwata, A., Kretzer, N.M., Durai, V.,Murphy, K.M. 2016. Transcriptional Control of Dendritic Cell Development. Annu. Rev. Immunol. 34, 93-119.
    [50]
    Nilsson, M.,Fagman, H., 2017. Development of the thyroid gland. Development 144, 2123-2140.
    [51]
    Norman, T.M., Horlbeck, M.A., Replogle, J.M., Ge, A.Y., Xu, A., Jost, M., Gilbert, L.A.,Weissman, J.S., 2019. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786-793.
    [52]
    Omranian, N., Eloundou-Mbebi, J.M.O., Mueller-Roeber, B.,Nikoloski, Z., 2016. Gene regulatory network inference using fused LASSO on multiple data sets. Sci. Rep. 6, 14.
    [53]
    Pearce, E.L., Mullen, A.C., Martins, G.A., Krawczyk, C.M., Hutchins, A.S., Zediak, V.P., Banica, M., DiCioccio, C.B., Gross, D.A., Mao, C.A., et al., 2003. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041-1043.
    [54]
    Peng, Y., Zuo, W., Zhou, H., Miao, F., Zhang, Y., Qin, Y., Liu, Y., Long, Y.,Ma, S., 2022. EXPLICIT-Kinase: A gene expression predictor for dissecting the functions of the Arabidopsis kinome. J Integr. Plant Biol. 64, 1374-1393.
    [55]
    Pierson, E., Koller, D., Battle, A., Mostafavi, S., Ardlie, K.G., Getz, G., Wright, F.A., Kellis, M., Volpi, S.,Dermitzakis, E.T., 2015. Sharing and Specificity of Co-expression Networks across 35 Human Tissues. PLoS Comput. Biol. 11, e1004220.
    [56]
    Post, M., Cuapio, A., Osl, M., Lehmann, D., Resch, U., Davies, D.M., Bilban, M., Schlechta, B., Eppel, W., Nathwani, A., et al., 2017. The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development. Front. Immunol. 8, 535.
    [57]
    Qin, Q., Fan, J., Zheng, R., Wan, C., Mei, S., Wu, Q., Sun, H., Brown, M., Zhang, J., Meyer, C.A., et al., 2020. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biol. 21, 32.
    [58]
    Rosen, E.D., Walkey, C.J., Puigserver, P.,Spiegelman, B.M., 2000. Transcriptional regulation of adipogenesis. Genes Dev. 14, 1293-1307.
    [59]
    Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., Wang, Z.C., Monteiro, C.D., McDermott, M.G.,Ma'ayan, A., 2016. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database-Oxford 2016, baw100.
    [60]
    Schafer, J.,Strimmer, K., 2005. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4, Article32.
    [61]
    Schroeder, H.W., Radbruch, A.,Berek, C. 2019. B-Cell Development and Differentiation, in: Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M. (Eds.), Clin. Immunol. Elsevier, London, pp. 107-118.e101.
    [62]
    Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D.,Friedman, N., 2003. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166-176.
    [63]
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B.,Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13.
    [64]
    Sonawane, A.R., Platig, J., Fagny, M., Chen, C.Y., Paulson, J.N., Lopes-Ramos, C.M., DeMeo, D.L., Quackenbush, J., Glass, K.,Kuijjer, M.L., 2017. Understanding Tissue-Specific Gene Regulation. Cell Rep. 21, 1077-1088.
    [65]
    Sullivan, B.M., Juedes, A., Szabo, S.J., von Herrath, M.,Glimcher, L.H., 2003. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl. Acad. Sci. U. S. A. 100, 15818-15823.
    [66]
    Taniuchi, I., 2018. CD4 Helper and CD8 Cytotoxic T Cell Differentiation. Annu. Rev. Immunol. 36, 579-601.
    [67]
    Thierfelder, W.E., van Deursen, J.M., Yamamoto, K., Tripp, R.A., Sarawar, S.R., Carson, R.T., Sangster, M.Y., Vignali, D.A., Doherty, P.C., Grosveld, G.C., et al., 1996. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171-174.
    [68]
    Thompson, D., Regev, A.,Roy, S., 2015. Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu. Rev. Cell Dev. Biol. 31, 399-428.
    [69]
    Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B-Methodol. 58, 267-288.
    [70]
    VohradskY, J., 2001. Neural network model of gene expression. The FASEB Journal 15, 846-854.
    [71]
    Wang, Z., Civelek, M., Miller, C.L., Sheffield, N.C., Guertin, M.J.,Zang, C., 2018. BART: a transcription factor prediction tool with query gene sets or epigenomic profiles. Bioinformatics 34, 2867-2869.
    [72]
    Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., et al., 2014. Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell 158, 1431-1443.
    [73]
    Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Pruss, M., Reuter, I.,Schacherer, F., 2000. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 28, 316-319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (216) PDF downloads (19) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return