[1] |
Biswas, S., Kerner, K., Teixeira, P., Dangl, J.L., Jojic, V.,Wigge, P.A., 2017. Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes. Nat. Commun. 8, 15309.
|
[2] |
Calvert, P.D., Krasnoperova, N.V., Lyubarsky, A.L., Isayama, T., Nicolo, M., Kosaras, B., Wong, G., Gannon, K.S., Margolskee, R.F., Sidman, R.L., et al., 2000. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proc. Natl. Acad. Sci. U. S. A. 97, 13913-13918.
|
[3] |
Carmeliet, P.,Jain, R.K., 2011. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307.
|
[4] |
Cheng, H., Khanna, H., Oh, E.C., Hicks, D., Mitton, K.P.,Swaroop, A., 2004. Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum. Mol. Genet. 13, 1563-1575.
|
[5] |
Choi, J., Baldwin, T.M., Wong, M., Bolden, J.E., Fairfax, K.A., Lucas, E.C., Cole, R., Biben, C., Morgan, C., Ramsay, K.A., et al., 2018. Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic Acids Res. 47, D780-D785.
|
[6] |
Di Vito, C., Mikulak, J.,Mavilio, D., 2019. On the Way to Become a Natural Killer Cell. Front. Immunol. 10, 15.
|
[7] |
Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C.P., Jerby-Arnon, L., Marjanovic, N.D., Dionne, D., Burks, T., Raychowdhury, R., et al., 2016. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 167, 1853-1866 e1817.
|
[8] |
Donner, Y., Feng, T., Benoist, C.,Koller, D., 2012. Imputing gene expression from selectively reduced probe sets. Nat. Methods 9, 1120-1125.
|
[9] |
Consortium, E.P., 2004. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636-640.
|
[10] |
Enright, A.J., Van Dongen, S.,Ouzounis, C.A., 2002. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575-1584.
|
[11] |
Fontenot, J.D., Gavin, M.A.,Rudensky, A.Y., 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330-336.
|
[12] |
Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranasic, D., et al., 2020. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87-d92.
|
[13] |
Friedman, N., 2004. Inferring cellular networks using probabilistic graphical models. Science 303, 799-805.
|
[14] |
Garrett-Sinha, L.A., Su, G.H., Rao, S., Kabak, S., Hao, Z., Clark, M.R.,Simon, M.C., 1999. PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity 10, 399-408.
|
[15] |
Geng, H., Wang, M., Gong, J., Xu, Y.,Ma, S., 2021. An Arabidopsis expression predictor enables inference of transcriptional regulators for gene modules. Plant J. 107, 597-612.
|
[16] |
Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., Khurana, E., Rozowsky, J., Alexander, R., et al., 2012. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91-100.
|
[17] |
Consortium, G.T., Laboratory, D.A., Coordinating Center -Analysis Working, G., Statistical Methods groups-Analysis Working, G., Enhancing, G.g., Fund, N.I.H.C., Nih/Nci, Nih/Nhgri, Nih/Nimh, Nih/Nida, et al., 2017. Genetic effects on gene expression across human tissues. Nature 550, 204-213.
|
[18] |
Gu, Z., Gu, L., Eils, R., Schlesner, M.,Brors, B., 2014. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811-2812.
|
[19] |
Harrington, L.E. 2019. T-Cell Development, in: Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M. (Eds.), Clin. Immunol. Elsevier, London, pp. 119-125.e111.
|
[20] |
Hattangadi, S.M., Wong, P., Zhang, L.B., Flygare, J.,Lodish, H.F., 2011. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118, 6258-6268.
|
[21] |
Haury, A.C., Mordelet, F., Vera-Licona, P.,Vert, J.P., 2012. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst. Biol. 6, 145.
|
[22] |
Heimberg, G., Bhatnagar, R., El-Samad, H.,Thomson, M., 2016. Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell Syst. 2, 239-250.
|
[23] |
Hori, S., Nomura, T.,Sakaguchi, S., 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
|
[24] |
Hu, H., Miao, Y.R., Jia, L.H., Yu, Q.Y., Zhang, Q.,Guo, A.Y., 2019. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 47, D33-d38.
|
[25] |
Hu, H., Wang, B., Borde, M., Nardone, J., Maika, S., Allred, L., Tucker, P.W.,Rao, A., 2006. Foxp1 is an essential transcriptional regulator of B cell development. Nat. Immunol. 7, 819-826.
|
[26] |
Huynh-Thu, V.A., Irrthum, A., Wehenkel, L.,Geurts, P., 2010. Inferring regulatory networks from expression data using tree-based methods. PLoS One 5, e12776.
|
[27] |
Ivanov, II, McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., Cua, D.J.,Littman, D.R., 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133.
|
[28] |
Ivashkiv, L.B.,Donlin, L.T., 2014. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36-49.
|
[29] |
Jennings, R.E., Berry, A.A., Strutt, J.P., Gerrard, D.T.,Hanley, N.A., 2015. Human pancreas development. Development 142, 3126-3137.
|
[30] |
Jiang, J., Lv, W., Ye, X., Wang, L., Zhang, M., Yang, H., Okuka, M., Zhou, C., Zhang, X., Liu, L., et al., 2013. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res. 23, 92-106.
|
[31] |
Jolma, A., Yan, J., Whitington, T., Toivonen, J., Nitta, K.R., Rastas, P., Morgunova, E., Enge, M., Taipale, M., Wei, G., et al., 2013. DNA-binding specificities of human transcription factors. Cell 152, 327-339.
|
[32] |
Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B.,Craig, R.W., 1991. PARTICIPATION OF P53 PROTEIN IN THE CELLULAR-RESPONSE TO DNA DAMAGE. Cancer Res. 51, 6304-6311.
|
[33] |
Keenan, A.B., Torre, D., Lachmann, A., Leong, A.K., Wojciechowicz, M.L., Utti, V., Jagodnik, K.M., Kropiwnicki, E., Wang, Z.,Ma'ayan, A., 2019. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212-w224.
|
[34] |
Kemmeren, P., Sameith, K., van de Pasch, L.A., Benschop, J.J., Lenstra, T.L., Margaritis, T., O'Duibhir, E., Apweiler, E., van Wageningen, S., Ko, C.W., et al., 2014. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157, 740-752.
|
[35] |
Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al., 2016. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-97.
|
[36] |
Kurotaki, D., Sasaki, H.,Tamura, T., 2017. Transcriptional control of monocyte and macrophage development. Int. Immunol. 29, 97-107.
|
[37] |
Lachmann, A., Torre, D., Keenan, A.B., Jagodnik, K.M., Lee, H.J., Wang, L., Silverstein, M.C.,Ma’ayan, A., 2018. Massive mining of publicly available RNA-seq data from human and mouse. Nat. Commun. 9, 1366.
|
[38] |
Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T.R.,Weirauch, M.T., 2018. The Human Transcription Factors. Cell 172, 650-665.
|
[39] |
Lawrence, S.M., Corriden, R.,Nizet, V., 2018. The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol. Mol. Biol. Rev. 82.
|
[40] |
Liao, J.C., Boscolo, R., Yang, Y.-L., Tran, L.M., Sabatti, C.,Roychowdhury, V.P., 2003. Network component analysis: Reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. U. S. A. 100, 15522.
|
[41] |
Liu, P., Keller, J.R., Ortiz, M., Tessarollo, L., Rachel, R.A., Nakamura, T., Jenkins, N.A.,Copeland, N.G., 2003. Bcl11a is essential for normal lymphoid development. Nat. Immunol. 4, 525-532.
|
[42] |
Ma, S., Gong, Q.,Bohnert, H.J., 2007. An Arabidopsis gene network based on the graphical Gaussian model. Genome Res. 17, 1614-1625.
|
[43] |
Mack, E.A.,Pear, W.S., 2020. Transcription factor and cytokine regulation of eosinophil lineage commitment. Curr. Opin. Hematol. 27, 27-33.
|
[44] |
Matsui, T., Kanai-Azuma, M., Hara, K., Matoba, S., Hiramatsu, R., Kawakami, H., Kurohmaru, M., Koopman, P.,Kanai, Y., 2006. Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J. Cell. Sci. 119, 3513-3526.
|
[45] |
Miesfeld, J.B.,Brown, N.L., 2019. Eye organogenesis: A hierarchical view of ocular development. Curr. Top. Dev. Biol. 132, 351-393.
|
[46] |
Mitchell, P.J.,Tjian, R., 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.
|
[47] |
Mittrucker, H.W., Matsuyama, T., Grossman, A., Kundig, T.M., Potter, J., Shahinian, A., Wakeham, A., Patterson, B., Ohashi, P.S.,Mak, T.W., 1997. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540-543.
|
[48] |
Montgomery, D.C., Peck, E.A.,Vining, G.G., 2012. Introduction to linear regression analysis, 5th ed. Wiley, Hoboken, NJ.
|
[49] |
Murphy, T.L., Grajales-Reyes, G.E., Wu, X.D., Tussiwand, R., Briseno, C.G., Iwata, A., Kretzer, N.M., Durai, V.,Murphy, K.M. 2016. Transcriptional Control of Dendritic Cell Development. Annu. Rev. Immunol. 34, 93-119.
|
[50] |
Nilsson, M.,Fagman, H., 2017. Development of the thyroid gland. Development 144, 2123-2140.
|
[51] |
Norman, T.M., Horlbeck, M.A., Replogle, J.M., Ge, A.Y., Xu, A., Jost, M., Gilbert, L.A.,Weissman, J.S., 2019. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786-793.
|
[52] |
Omranian, N., Eloundou-Mbebi, J.M.O., Mueller-Roeber, B.,Nikoloski, Z., 2016. Gene regulatory network inference using fused LASSO on multiple data sets. Sci. Rep. 6, 14.
|
[53] |
Pearce, E.L., Mullen, A.C., Martins, G.A., Krawczyk, C.M., Hutchins, A.S., Zediak, V.P., Banica, M., DiCioccio, C.B., Gross, D.A., Mao, C.A., et al., 2003. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041-1043.
|
[54] |
Peng, Y., Zuo, W., Zhou, H., Miao, F., Zhang, Y., Qin, Y., Liu, Y., Long, Y.,Ma, S., 2022. EXPLICIT-Kinase: A gene expression predictor for dissecting the functions of the Arabidopsis kinome. J Integr. Plant Biol. 64, 1374-1393.
|
[55] |
Pierson, E., Koller, D., Battle, A., Mostafavi, S., Ardlie, K.G., Getz, G., Wright, F.A., Kellis, M., Volpi, S.,Dermitzakis, E.T., 2015. Sharing and Specificity of Co-expression Networks across 35 Human Tissues. PLoS Comput. Biol. 11, e1004220.
|
[56] |
Post, M., Cuapio, A., Osl, M., Lehmann, D., Resch, U., Davies, D.M., Bilban, M., Schlechta, B., Eppel, W., Nathwani, A., et al., 2017. The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development. Front. Immunol. 8, 535.
|
[57] |
Qin, Q., Fan, J., Zheng, R., Wan, C., Mei, S., Wu, Q., Sun, H., Brown, M., Zhang, J., Meyer, C.A., et al., 2020. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biol. 21, 32.
|
[58] |
Rosen, E.D., Walkey, C.J., Puigserver, P.,Spiegelman, B.M., 2000. Transcriptional regulation of adipogenesis. Genes Dev. 14, 1293-1307.
|
[59] |
Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., Wang, Z.C., Monteiro, C.D., McDermott, M.G.,Ma'ayan, A., 2016. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database-Oxford 2016, baw100.
|
[60] |
Schafer, J.,Strimmer, K., 2005. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4, Article32.
|
[61] |
Schroeder, H.W., Radbruch, A.,Berek, C. 2019. B-Cell Development and Differentiation, in: Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M. (Eds.), Clin. Immunol. Elsevier, London, pp. 107-118.e101.
|
[62] |
Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D.,Friedman, N., 2003. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166-176.
|
[63] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B.,Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13.
|
[64] |
Sonawane, A.R., Platig, J., Fagny, M., Chen, C.Y., Paulson, J.N., Lopes-Ramos, C.M., DeMeo, D.L., Quackenbush, J., Glass, K.,Kuijjer, M.L., 2017. Understanding Tissue-Specific Gene Regulation. Cell Rep. 21, 1077-1088.
|
[65] |
Sullivan, B.M., Juedes, A., Szabo, S.J., von Herrath, M.,Glimcher, L.H., 2003. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl. Acad. Sci. U. S. A. 100, 15818-15823.
|
[66] |
Taniuchi, I., 2018. CD4 Helper and CD8 Cytotoxic T Cell Differentiation. Annu. Rev. Immunol. 36, 579-601.
|
[67] |
Thierfelder, W.E., van Deursen, J.M., Yamamoto, K., Tripp, R.A., Sarawar, S.R., Carson, R.T., Sangster, M.Y., Vignali, D.A., Doherty, P.C., Grosveld, G.C., et al., 1996. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171-174.
|
[68] |
Thompson, D., Regev, A.,Roy, S., 2015. Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu. Rev. Cell Dev. Biol. 31, 399-428.
|
[69] |
Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B-Methodol. 58, 267-288.
|
[70] |
VohradskY, J., 2001. Neural network model of gene expression. The FASEB Journal 15, 846-854.
|
[71] |
Wang, Z., Civelek, M., Miller, C.L., Sheffield, N.C., Guertin, M.J.,Zang, C., 2018. BART: a transcription factor prediction tool with query gene sets or epigenomic profiles. Bioinformatics 34, 2867-2869.
|
[72] |
Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., et al., 2014. Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell 158, 1431-1443.
|
[73] |
Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Pruss, M., Reuter, I.,Schacherer, F., 2000. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 28, 316-319.
|