[1] |
Anzalone, A. V, Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., Liu, D.R., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
|
[2] |
Beziat, V., Rapaport, F., Hu, J., Titeux, M., Bonnet des Claustres, M., Bourgey, M., Griffin, H., Bandet, E., Ma, C.S., Sherkat, R., Rokni-Zadeh, H., Louis, D.M., Changi-Ashtiani, M., Delmonte, O.M., Fukushima, T., Habib, T., Guennoun, A., Khan, T., Bender, N., Rahman, M., About, F., Yang, R., Rao, G., Rouzaud, C., Li, J., Shearer, D., Balogh, K., Al Ali, F., Ata, M., Dabiri, S., Momenilandi, M., Nammour, J., Alyanakian, M.-A., Leruez-Ville, M., Guenat, D., Materna, M., Marcot, L., Vladikine, N., Soret, C., Vahidnezhad, H., Youssefian, L., Saeidian, A.H., Uitto, J., Catherinot, E., Navabi, S.S., Zarhrate, M., Woodley, D.T., Jeljeli, M., Abraham, T., Belkaya, S., Lorenzo, L., Rosain, J., Bayat, M., Lanternier, F., Lortholary, O., Zakavi, F., Gros, P., Orth, G., Abel, L., Pretet, J.-L., Fraitag, S., Jouanguy, E., Davis, M.M., Tangye, S.G., Notarangelo, L.D., Marr, N., Waterboer, T., Langlais, D., Doorbar, J., Hovnanian, A., Christensen, N., Bossuyt, X., Shahrooei, M., Casanova, J.-L., 2021. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell 184, 3812-3828.e30.
|
[3] |
Bousfiha, A., Jeddane, L., Picard, C., Al-Herz, W., Ailal, F., Chatila, T., Cunningham-Rundles, C., Etzioni, A., Franco, J.L., Holland, S.M., Klein, C., Morio, T., Ochs, H.D., Oksenhendler, E., Puck, J., Torgerson, T.R., Casanova, J.-L., Sullivan, K.E., Tangye, S.G., 2020. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. Journal of Clinical Immunology 40, 66-81.
|
[4] |
Chemnitz, J.M., Parry, R. V, Nichols, K.E., June, C.H., Riley, J.L., 2004. SHP-1 and SHP-2 Associate with Immunoreceptor Tyrosine-Based Switch Motif of Programmed Death 1 upon Primary Human T Cell Stimulation, but Only Receptor Ligation Prevents T Cell Activation. The Journal of Immunology 173, 945 LP - 954.
|
[5] |
Daud, A.I., Loo, K., Pauli, M.L., Sanchez-Rodriguez, R., Sandoval, P.M., Taravati, K., Tsai, K., Nosrati, A., Nardo, L., Alvarado, M.D., Algazi, A.P., Pampaloni, M.H., Lobach, I. V, Hwang, J., Pierce, R.H., Gratz, I.K., Krummel, M.F., Rosenblum, M.D., 2016. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. The Journal of Clinical Investigation 126, 3447-3452.
|
[6] |
Erdag, G., Schaefer, J.T., Smolkin, M.E., Deacon, D.H., Shea, S.M., Dengel, L.T., Patterson, J.W., Slingluff, C.L., 2012. Immunotype and Immunohistologic Characteristics of Tumor-Infiltrating Immune Cells Are Associated with Clinical Outcome in Metastatic Melanoma. Cancer Research 72, 1070 LP - 1080.
|
[7] |
Feucht, J., Sun, J., Eyquem, J., Ho, Y.-J., Zhao, Z., Leibold, J., Dobrin, A., Cabriolu, A., Hamieh, M., Sadelain, M., 2019. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nature Medicine 25, 82-88.
|
[8] |
Flugel, A., Willem, M., Berkowicz, T., Wekerle, H., 1999. Gene transfer into CD4+ T lymphocytes: Green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses. Nature Medicine 5, 843-847.
|
[9] |
Graham, A.L., 2021. Naturalizing mouse models for immunology. Nature Immunology 22, 111-117. https://doi.org/10.1038/s41590-020-00857-2
|
[10] |
Guedan, S., Madar, A., Casado-Medrano, V., Shaw, C., Wing, A., Liu, F., Young, R.M., June, C.H., Posey Jr., A.D., 2020. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. The Journal of Clinical Investigation 130, 3087-3097.
|
[11] |
He, X., Xu, C., 2020. Immune checkpoint signaling and cancer immunotherapy. Cell Research 30, 660-669.
|
[12] |
Kagoya, Y., Tanaka, S., Guo, T., Anczurowski, M., Wang, C.-H., Saso, K., Butler, M.O., Minden, M.D., Hirano, N., 2018. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nature medicine 24, 352-359.
|
[13] |
Kent, A., Longino, N. V, Christians, A., Davila, E., 2021. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Frontiers in Immunology 12, 1380.
|
[14] |
Kim, H.K., Yu, G., Park, J., Min, S., Lee, S., Yoon, S., Kim, H.H., 2021. Predicting the efficiency of prime editing guide RNAs in human cells. Nature Biotechnology 39, 198-206.
|
[15] |
Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Cowey, C.L., Lao, C.D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P.F., Hill, A., Wagstaff, J., Carlino, M.S., Haanen, J.B., Maio, M., Marquez-Rodas, I., McArthur, G.A., Ascierto, P.A., Long, G. V, Callahan, M.K., Postow, M.A., Grossmann, K., Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L.M., Horak, C., Hodi, F.S., Wolchok, J.D., 2015. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. New England Journal of Medicine 373, 23-34.
|
[16] |
Meng, X., Jing, R., Qian, L., Zhou, C., Sun, J., 2020. Engineering Cytoplasmic Signaling of CD28ζ CARs for Improved Therapeutic Functions. Frontiers in Immunology 11, 1046.
|
[17] |
Mocsai, A., Abram, C.L., Jakus, Z., Hu, Y., Lanier, L.L., Lowell, C.A., 2006. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nature Immunology 7, 1326-1333.
|
[18] |
Notarangelo, L.D., Bacchetta, R., Casanova, J.-L., Su, H.C., 2020. Human inborn errors of immunity: An expanding universe. Science Immunology 5, eabb1662.
|
[19] |
Ogishi, M., Yang, R., Aytekin, C., Langlais, D., Bourgey, M., Khan, T., Ali, F.Al, Rahman, M., Delmonte, O.M., Chrabieh, M., Zhang, P., Gruber, C., Pelham, S.J., Spaan, A.N., Rosain, J., Lei, W.-T., Drutman, S., Hellmann, M.D., Callahan, M.K., Adamow, M., Wong, P., Wolchok, J.D., Rao, G., Ma, C.S., Nakajima, Y., Yaguchi, T., Chamoto, K., Williams, S.C., Emile, J.-F., Rozenberg, F., Glickman, M.S., Rapaport, F., Kerner, G., Allington, G., Tezcan, I., Cagdas, D., Hosnut, F.O., Dogu, F., Ikinciogullari, A., Rao, V.K., Kainulainen, L., Beziat, V., Bustamante, J., Vilarinho, S., Lifton, R.P., Boisson, B., Abel, L., Bogunovic, D., Marr, N., Notarangelo, L.D., Tangye, S.G., Honjo, T., Gros, P., Boisson-Dupuis, S., Casanova, J.-L., 2021. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nature Medicine.
|
[20] |
Prasad, K. V, Cai, Y.C., Raab, M., Duckworth, B., Cantley, L., Shoelson, S.E., Rudd, C.E., 1994. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proceedings of the National Academy of Sciences 91, 2834 LP - 2838.
|
[21] |
Perez-Villar, J.J., Whitney, G.S., Bowen, M.A., Hewgill, D.H., Aruffo, A.A., Kanner, S.B., 1999. CD5 negatively regulates the T-cell antigen receptor signal transduction pathway: involvement of SH2-containing phosphotyrosine phosphatase SHP-1. Mol. Cell Biol. 19, 2903-2912.
|
[22] |
Seliger, B., Wollscheid, U., Momburg, F., Blankenstein, T., Huber, C., 2001. Characterization of the Major Histocompatibility Complex Class I Deficiencies in B16 Melanoma Cells. Cancer Research 61, 1095 LP - 1099.
|
[23] |
Stumpf, M., Zhou, X., Chikuma, S., Bluestone, J.A., 2014. Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. European Journal of Immunology 44, 1737-1746.
|
[24] |
Ulaganathan, V.K., Sperl, B., Rapp, U.R., Ullrich, A., 2015. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 528, 570-574.
|
[25] |
Waldman, A.D., Fritz, J.M., Lenardo, M.J., 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology 20, 651-668.
|