[1] |
Aissani, B., Zhang, K., Wiener, H., 2015. Evaluation of GWAS candidate susceptibility loci for uterine leiomyoma in the multi-ethnic NIEHS uterine fibroid study. Front. Genet. 6, 241.
|
[2] |
Alleyne, A.T., Bideau, V.S., 2019. Haplotypes of CYP1B1 and CCDC57 genes in an Afro-Caribbean female population with uterine leiomyoma. Mol. Biol. Rep. 46, 3299-3306.
|
[3] |
Austin-Tse, C., Halbritter, J., Zariwala, M.A., Gilberti, R.M., Gee, H.Y., Hellman, N., Pathak, N., Liu, Y., Panizzi, J.R., Patel-King, R.S., et al., 2013. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet. 93, 672-686.
|
[4] |
Bartoloni, L., Blouin, J.L., Pan, Y., Gehrig, C., Maiti, A.K., Scamuffa, N., Rossier, C., Jorissen, M., Armengot, M., Meeks, M., et al., 2002. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl. Acad. Sci. U. S. A 99, 10282-10286.
|
[5] |
Bazan, R., Schrofel, A., Joachimiak, E., Poprzeczko, M., Pigino, G., Wloga, D., 2021. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet. 17, e1009388.
|
[6] |
Becker-Heck, A., Zohn, I.E., Okabe, N., Pollock, A., Lenhart, K.B., Sullivan-Brown, J., McSheene, J., Loges, N.T., Olbrich, H., Haeffner, K., et al., 2011. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 43, 79-84.
|
[7] |
Benjamin, A.T., Ganesh, R., Chinnappa, J., Kinimi, I., Lucas, J., 2020. Primary ciliary dyskinesia due to DRC1/CCDC164 gene mutation. Lung India 37, 179-180.
|
[8] |
Blanchon, S., Legendre, M., Copin, B., Duquesnoy, P., Montantin, G., Kott, E., Dastot, F., Jeanson, L., Cachanado, M., Rousseau, A., et al., 2012. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J. Med. Genet. 49, 410-416.
|
[9] |
Bohlouli, M., Halli, K., Yin, T., Gengler, N., Konig, S., 2022. Genome-wide associations for heat stress response suggest potential candidate genes underlying milk fatty acid composition in dairy cattle. J. Dairy Sci. 105, 3323-3340.
|
[10] |
Bouwman, A.C., Visker, M.H., van Arendonk, J.M., Bovenhuis, H., 2014. Fine mapping of a quantitative trait locus for bovine milk fat composition on Bos taurus autosome 19. J. Dairy Sci. 97, 1139-1149.
|
[11] |
Burkhard, P., Stetefeld, J., Strelkov, S.V., 2001. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11, 82-88.
|
[12] |
Cannarella, R., Maniscalchi, E.T., Condorelli, R.A., Scalia, M., Guerri, G., La Vignera, S., Bertelli, M., Calogero, A.E., 2020. Ultrastructural sperm flagellum defects in a patient with CCDC39 compound heterozygous mutations and primary ciliary dyskinesia/situs viscerum inversus. Front. Genet. 11, 974.
|
[13] |
Chen, D., Liang, Y., Li, J., Zhang, X., Zheng, R., Wang, X., Zhang, H., Shen, Y., 2021. A novel CCDC39 mutation causes multiple morphological abnormalities of the flagella in a primary ciliary dyskinesia patient. Reprod. Biomed. Online 43, 920-930.
|
[14] |
Chen, X., Deng, S., Xia, H., Yuan, L., Xu, H., Tang, S., Deng, H., 2020. Identification of a CCDC114 variant in a Han-Chinese patient with situs inversus. Exp. Ther. Med. 20, 3336-3342.
|
[15] |
Deng, S., Wu, S., Xia, H., Xiong, W., Deng, X., Liao, J., Deng, H., Yuan, L., 2020. Identification of a frame shift mutation in the CCDC151 gene in a Han-Chinese family with Kartagener syndrome. Biosci. Rep. 40, BSR20192510.
|
[16] |
Escudier, E., Duquesnoy, P., Papon, J.F., Amselem, S., 2009. Ciliary defects and genetics of primary ciliary dyskinesia. Paediatr. Respir. Rev. 10, 51-54.
|
[17] |
Firat-Karalar, E.N., Sante, J., Elliott, S., Stearns, T., 2014. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J. Cell Sci. 127, 4128-4133.
|
[18] |
Grimes, D.T., Boswell, C.W., Morante, N.F., Henkelman, R.M., Burdine, R.D., Ciruna, B., 2016. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352, 1341-1344.
|
[19] |
Gurkaslar, H.K., Culfa, E., Arslanhan, M.D., Lince-Faria, M., Firat-Karalar, E.N., 2020. CCDC57 cooperates with microtubules and microcephaly protein CEP63 and regulates centriole duplication and mitotic progression. Cell Rep. 31, 107630.
|
[20] |
Harbury, P.B., Plecs, J.J., Tidor, B., Alber, T., Kim, P.S., 1998. High-resolution protein design with backbone freedom. Science 282, 1462-1467.
|
[21] |
Hayes, M., Gao, X., Yu, L.X., Paria, N., Henkelman, R.M., Wise, C.A., Ciruna, B., 2014. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat. Commun. 5, 4777.
|
[22] |
Hjeij, R., Lindstrand, A., Francis, R., Zariwala, M.A., Liu, X., Li, Y., Damerla, R., Dougherty, G.W., Abouhamed, M., Olbrich, H., et al., 2013. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am. J. Hum. Genet. 93, 357-367.
|
[23] |
Hjeij, R., Onoufriadis, A., Watson, C.M., Slagle, C.E., Klena, N.T., Dougherty, G.W., Kurkowiak, M., Loges, N.T., Diggle, C.P., Morante, N.F., et al., 2014. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am. J. Hum. Genet. 95, 257-274.
|
[24] |
Horani, A., Brody, S.L., Ferkol, T.W., Shoseyov, D., Wasserman, M.G., Ta-shma, A., Wilson, K.S., Bayly, P.V., Amirav, I., Cohen-Cymberknoh, M., et al., 2013. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One 8, e72299.
|
[25] |
Horani, A., Druley, T.E., Zariwala, M.A., Patel, A.C., Levinson, B.T., Van Arendonk, L.G., Thornton, K.C., Giacalone, J.C., Albee, A.J., Wilson, K.S., et al., 2012. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am. J. Hum. Genet. 91, 685-693.
|
[26] |
Huang, N., Xia, Y., Zhang, D., Wang, S., Bao, Y., He, R., Teng, J., Chen, J., 2017. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nat. Commun. 8, 15057.
|
[27] |
Ishikawa, T., 2017. Axoneme structure from motile cilia. Cold Spring Harbor Perspect. Biol. 9, a028076.
|
[28] |
Jaffe, K.M., Thiberge, SY., Bisher, ME., Burdine, R.D., 2010. Imaging cilia in zebrafish. Methods Cell Biol 97, 415–435.
|
[29] |
Jerber, J., Baas, D., Soulavie, F., Chhin, B., Cortier, E., Vesque, C., Thomas, J., Durand, B., 2014. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals. Hum. Mol. Genet. 23, 563-577.
|
[30] |
Joo, K., Kim, C.G., Lee, M.S., Moon, H.Y., Lee, S.H., Kim, M.J., Kweon, H.S., Park, W.Y., Kim, C.H., Gleeson, J.G., et al., 2013. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc. Natl. Acad. Sci. U. S. A 110, 5987-5992.
|
[31] |
King, S.M., 2016. Axonemal dynein arms. Cold Spring Harbor Perspect. Biol. 8, a028100.
|
[32] |
Knowles, M.R., Leigh, M.W., Ostrowski, L.E., Huang, L., Carson, J.L., Hazucha, M.J., Yin, W., Berg, J.S., Davis, S.D., Dell, S.D., et al., 2013a. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am. J. Hum. Genet. 92, 99-106.
|
[33] |
Knowles, M.R., Ostrowski, L.E., Loges, N.T., Hurd, T., Leigh, M.W., Huang, L., Wolf, W.E., Carson, J.L., Hazucha, M.J., Yin, W., et al., 2013b. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am. J. Hum. Genet. 93, 711-720.
|
[34] |
Kott, E., Duquesnoy, P., Copin, B., Legendre, M., Dastot-Le Moal, F., Montantin, G., Jeanson, L., Tamalet, A., Papon, J.F., Siffroi, J.P., et al., 2012. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 91, 958-964.
|
[35] |
Lee, L., 2013. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J. Neurosci. Res. 91, 1117-1132.
|
[36] |
Li, P., He, Y., Cai, G., Xiao, F., Yang, J., Li, Q., Chen, X., 2019. CCDC114 is mutated in patient with a complex phenotype combining primary ciliary dyskinesia, sensorineural deafness, and renal disease. J. Hum. Genet. 64, 39-48.
|
[37] |
Loges, N.T., Olbrich, H., Becker-Heck, A., Haffner, K., Heer, A., Reinhard, C., Schmidts, M., Kispert, A., Zariwala, M.A., Leigh, M.W., et al., 2009. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am. J. Hum. Genet. 85, 883-889.
|
[38] |
Loges, N.T., Olbrich, H., Fenske, L., Mussaffi, H., Horvath, J., Fliegauf, M., Kuhl, H., Baktai, G., Peterffy, E., Chodhari, R., et al., 2008. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 83, 547-558.
|
[39] |
Lokaj, M., Kosling, S.K., Koerner, C., Lange, S.M., van Beersum, S.E., van Reeuwijk, J., Roepman, R., Horn, N., Ueffing, M., Boldt, K., et al., 2015. The interaction of CCDC104/BARTL1 with Arl3 and implications for ciliary function. Structure 23, 2122-2132.
|
[40] |
Lowery, L.A., Sive, H., 2005. Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development 132, 2057–2067.
|
[41] |
Lupas, A., 1996. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21(10), 375-382.
|
[42] |
Lupas, A.N., Bassler, J., Dunin-Horkawicz, S., 2017. The structure and topology of alpha-helical coiled coils. Subcell. Biochem. 82, 95-129.
|
[43] |
Mahjoub, M.R., Xie, Z., Stearns, T., 2010. Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly. J. Cell Biol. 191, 331-346.
|
[44] |
Malicki, J., Avanesov, A., Li, J., Yuan, S., Sun, Z., 2011. Analysis of cilia structure and function in zebrafish. Methods Cell Biol. 101, 39-74.
|
[45] |
Mazor, M., Alkrinawi, S., Chalifa-Caspi, V., Manor, E., Sheffield, V.C., Aviram, M., Parvari, R., 2011. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 88, 599-607.
|
[46] |
Merveille, A.C., Davis, E.E., Becker-Heck, A., Legendre, M., Amirav, I., Bataille, G., Belmont, J., Beydon, N., Billen, F., Clement, A., et al., 2011. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 43, 72-78.
|
[47] |
Mitchison, H.M., Schmidts, M., Loges, N.T., Freshour, J., Dritsoula, A., Hirst, R.A., O'Callaghan, C., Blau, H., Al Dabbagh, M., Olbrich, H., et al., 2012. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 44, 381-389.
|
[48] |
Ochi, T., Quarantotti, V., Lin, H., Jullien, J., Rosa, E.S.I., Boselli, F., Barnabas, D.D., Johnson, C.M., McLaughlin, S.H., Freund, S.M.V., et al., 2020. CCDC61/VFL3 is a paralog of SAS6 and promotes ciliary functions. Structure 28, 674-689.
|
[49] |
Oda, T., Yanagisawa, H., Kamiya, R., Kikkawa, M., 2014. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346, 857-860.
|
[50] |
Olbrich, H., Haffner, K., Kispert, A., Volkel, A., Volz, A., Sasmaz, G., Reinhardt, R., Hennig, S., Lehrach, H., Konietzko, N., et al., 2002. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 30, 143-144.
|
[51] |
Olstad, E.W., Ringers, C., Hansen, J.N., Wens, A., Brandt, C., Wachten, D., Yaksi, E., Jurisch-Yaksi, N., 2019. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr. Biol. 29, 229-241.
|
[52] |
Omran, H., Kobayashi, D., Olbrich, H., Tsukahara, T., Loges, N.T., Hagiwara, H., Zhang, Q., Leblond, G., O'Toole, E., Hara, C., et al., 2008. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456, 611-616.
|
[53] |
Onoufriadis, A., Paff, T., Antony, D., Shoemark, A., Micha, D., Kuyt, B., Schmidts, M., Petridi, S., Dankert-Roelse, J.E., Haarman, E.G., et al., 2013. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum. Genet. 92, 88-98.
|
[54] |
Panizzi, J.R., Becker-Heck, A., Castleman, V.H., Al-Mutairi, D.A., Liu, Y., Loges, N.T., Pathak, N., Austin-Tse, C., Sheridan, E., Schmidts, M., et al., 2012. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 44, 714-719.
|
[55] |
Pennarun, G., Escudier, E., Chapelin, C., Bridoux, A.M., Cacheux, V., Roger, G., Clement, A., Goossens, M., Amselem, S., Duriez, B., 1999. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65, 1508-1519.
|
[56] |
Pizon, V., Gaudin, N., Poteau, M., Cifuentes-Diaz, C., Demdou, R., Heyer, V., Reina San Martin, B., Azimzadeh, J., 2020. hVFL3/CCDC61 is a component of mother centriole subdistal appendages required for centrosome cohesion and positioning. Biol. Cell. 112, 22-37.
|
[57] |
Priyanka, P.P., Yenugu, S., 2021. Coiled-coil domain-containing (CCDC) proteins: functional roles in general and male reproductive physiology. Reprod. Sci. 28, 2725-2734.
|
[58] |
Rackham, O.J., Madera, M., Armstrong, C.T., Vincent, T.L., Woolfson, D.N., Gough, J., 2010. The evolution and structure prediction of coiled coils across all genomes. J. Mol. Biol. 403, 480-493.
|
[59] |
Rose, A., Schraegle, S.J., Stahlberg, E.A., Meier, I., 2005. Coiled-coil protein composition of 22 proteomes--differences and common themes in subcellular infrastructure and traffic control. BMC Evol. Biol. 5, 66.
|
[60] |
Silva, E., Betleja, E., John, E., Spear, P., Moresco, J.J., Zhang, S., Yates, J.R., 3rd, Mitchell, B.J., Mahjoub, M.R., 2016. Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry. Mol. Biol. Cell 27, 48-63.
|
[61] |
Stetefeld, J., Jenny, M., Schulthess, T., Landwehr, R., Engel, J., Kammerer, R.A., 2000. Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nat. Struct. Biol. 7, 772-776.
|
[62] |
Sui, W., Hou, X., Che, W., Ou, M., Sun, G., Huang, S., Liu, F., Chen, P., Wei, X., Dai, Y., 2016. CCDC40 mutation as a cause of primary ciliary dyskinesia: a case report and review of literature. Clin. Res. J. 10, 614-621.
|
[63] |
Tarkar, A., Loges, N.T., Slagle, C.E., Francis, R., Dougherty, G.W., Tamayo, J.V., Shook, B., Cantino, M., Schwartz, D., Jahnke, C., et al., 2013. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 45, 995-1003.
|
[64] |
Thisse, C., Thisse, B., 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69.
|
[65] |
Truebestein, L., Leonard, T.A., 2016. Coiled-coils: the long and short of it. Bioessays 38, 903-916.
|
[66] |
Walczak, C.E., Nelson, D.L., 1994. Regulation of dynein-driven motility in cilia and flagella. Cell Motil Cytoskeleton 27, 101-107.
|
[67] |
Wu, D.H., Singaraja, R.R., 2013. Loss-of-function mutations in CCDC114 cause primary ciliary dyskinesia. Clin. Genet. 83, 526-527.
|
[68] |
Zariwala, M.A., Gee, H.Y., Kurkowiak, M., Al-Mutairi, D.A., Leigh, M.W., Hurd, T.W., Hjeij, R., Dell, S.D., Chaki, M., Dougherty, G.W., et al., 2013. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum. Genet. 93, 336-345.
|
[69] |
Zhang, X., Jia, S., Chen, Z., Chong, Y.L., Xie, H., Feng, D., Wu, X., Song, D.Z., Roy, S., Zhao, C., 2018. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat. Genet. 50, 1666-1673.
|
[70] |
Zhao, L., Xie, H., Kang, Y., Lin, Y., Liu, G., Sakato-Antoku, M., Patel-King, R.S., Wang, B., Wan, C., King, S.M., Zhao, C., Huang, K., 2021. Heme-binding protein CYB5D1 is a radial spoke component required for coordinated ciliary beating. Proc. Natl. Acad. Sci. U. S. A 118, e201568911.
|