5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 4
Apr.  2023
Turn off MathJax
Article Contents

Ccdc57 is required for straightening the body axis by regulating ciliary motility in the brain ventricle of zebrafish

doi: 10.1016/j.jgg.2022.12.007
Funds:

We thank Professor Zhu from Xidian University for conducting the micro-CT scanning and analysis, professors Jin and Li from East China Normal University for giving the arl13b-RFP mRNA as a gift. This work was supported by the National Key Research and Development Program, China (2018YFD0900406), the National Natural Science Foundation, China (31802291), and the Natural Science Foundation of Hunan Province (2021JJ40342).

  • Received Date: 2022-07-19
  • Accepted Date: 2022-12-31
  • Rev Recd Date: 2022-12-22
  • Publish Date: 2023-04-30
  • Recently, cilia defects have been proposed to contribute to scoliosis. Here, we demonstrate that coiled-coil domain-containing 57 (Ccdc57) plays an essential role in straightening the body axis of zebrafish by regulating ciliary beating in the brain ventricle (BV). Zygotic ccdc57 (Zccdc57) mutant zebrafish developes scoliosis without significant changes in their bone density and calcification, and the maternal-zygotic ccdc57 (MZccdc57) mutant embryos display curved bodies since the long-pec stage. The expression of ccdc57 is enriched in ciliated tissues and immunofluorescence analysis reveals colocalization of Ccdc57-HA with acetylated α-tubulin, implicating it in having a role in ciliary function. Further examination reveals that it is the coordinated cilia beating of multiple cilia bundles (MCB) in the MZccdc57 mutant embryos that is affected at 48 hours post fertilization, when the compromised cerebrospinal fluid flow and curved body axis have already occurred. Either ccdc57 mRNA injection or epinephrine treatment reverses the spinal curvature in MZccdc57 mutant larvae from ventrally curly to straight or even dorsally curly and significantly upregulates urotensin signaling. This study reveals the role of ccdc57 in maintaining coordinated cilia beating of MCB in the BV.
  • loading
  • [1]
    Aissani, B., Zhang, K., Wiener, H., 2015. Evaluation of GWAS candidate susceptibility loci for uterine leiomyoma in the multi-ethnic NIEHS uterine fibroid study. Front. Genet. 6, 241.
    [2]
    Alleyne, A.T., Bideau, V.S., 2019. Haplotypes of CYP1B1 and CCDC57 genes in an Afro-Caribbean female population with uterine leiomyoma. Mol. Biol. Rep. 46, 3299-3306.
    [3]
    Austin-Tse, C., Halbritter, J., Zariwala, M.A., Gilberti, R.M., Gee, H.Y., Hellman, N., Pathak, N., Liu, Y., Panizzi, J.R., Patel-King, R.S., et al., 2013. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet. 93, 672-686.
    [4]
    Bartoloni, L., Blouin, J.L., Pan, Y., Gehrig, C., Maiti, A.K., Scamuffa, N., Rossier, C., Jorissen, M., Armengot, M., Meeks, M., et al., 2002. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl. Acad. Sci. U. S. A 99, 10282-10286.
    [5]
    Bazan, R., Schrofel, A., Joachimiak, E., Poprzeczko, M., Pigino, G., Wloga, D., 2021. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet. 17, e1009388.
    [6]
    Becker-Heck, A., Zohn, I.E., Okabe, N., Pollock, A., Lenhart, K.B., Sullivan-Brown, J., McSheene, J., Loges, N.T., Olbrich, H., Haeffner, K., et al., 2011. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 43, 79-84.
    [7]
    Benjamin, A.T., Ganesh, R., Chinnappa, J., Kinimi, I., Lucas, J., 2020. Primary ciliary dyskinesia due to DRC1/CCDC164 gene mutation. Lung India 37, 179-180.
    [8]
    Blanchon, S., Legendre, M., Copin, B., Duquesnoy, P., Montantin, G., Kott, E., Dastot, F., Jeanson, L., Cachanado, M., Rousseau, A., et al., 2012. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J. Med. Genet. 49, 410-416.
    [9]
    Bohlouli, M., Halli, K., Yin, T., Gengler, N., Konig, S., 2022. Genome-wide associations for heat stress response suggest potential candidate genes underlying milk fatty acid composition in dairy cattle. J. Dairy Sci. 105, 3323-3340.
    [10]
    Bouwman, A.C., Visker, M.H., van Arendonk, J.M., Bovenhuis, H., 2014. Fine mapping of a quantitative trait locus for bovine milk fat composition on Bos taurus autosome 19. J. Dairy Sci. 97, 1139-1149.
    [11]
    Burkhard, P., Stetefeld, J., Strelkov, S.V., 2001. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11, 82-88.
    [12]
    Cannarella, R., Maniscalchi, E.T., Condorelli, R.A., Scalia, M., Guerri, G., La Vignera, S., Bertelli, M., Calogero, A.E., 2020. Ultrastructural sperm flagellum defects in a patient with CCDC39 compound heterozygous mutations and primary ciliary dyskinesia/situs viscerum inversus. Front. Genet. 11, 974.
    [13]
    Chen, D., Liang, Y., Li, J., Zhang, X., Zheng, R., Wang, X., Zhang, H., Shen, Y., 2021. A novel CCDC39 mutation causes multiple morphological abnormalities of the flagella in a primary ciliary dyskinesia patient. Reprod. Biomed. Online 43, 920-930.
    [14]
    Chen, X., Deng, S., Xia, H., Yuan, L., Xu, H., Tang, S., Deng, H., 2020. Identification of a CCDC114 variant in a Han-Chinese patient with situs inversus. Exp. Ther. Med. 20, 3336-3342.
    [15]
    Deng, S., Wu, S., Xia, H., Xiong, W., Deng, X., Liao, J., Deng, H., Yuan, L., 2020. Identification of a frame shift mutation in the CCDC151 gene in a Han-Chinese family with Kartagener syndrome. Biosci. Rep. 40, BSR20192510.
    [16]
    Escudier, E., Duquesnoy, P., Papon, J.F., Amselem, S., 2009. Ciliary defects and genetics of primary ciliary dyskinesia. Paediatr. Respir. Rev. 10, 51-54.
    [17]
    Firat-Karalar, E.N., Sante, J., Elliott, S., Stearns, T., 2014. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J. Cell Sci. 127, 4128-4133.
    [18]
    Grimes, D.T., Boswell, C.W., Morante, N.F., Henkelman, R.M., Burdine, R.D., Ciruna, B., 2016. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352, 1341-1344.
    [19]
    Gurkaslar, H.K., Culfa, E., Arslanhan, M.D., Lince-Faria, M., Firat-Karalar, E.N., 2020. CCDC57 cooperates with microtubules and microcephaly protein CEP63 and regulates centriole duplication and mitotic progression. Cell Rep. 31, 107630.
    [20]
    Harbury, P.B., Plecs, J.J., Tidor, B., Alber, T., Kim, P.S., 1998. High-resolution protein design with backbone freedom. Science 282, 1462-1467.
    [21]
    Hayes, M., Gao, X., Yu, L.X., Paria, N., Henkelman, R.M., Wise, C.A., Ciruna, B., 2014. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat. Commun. 5, 4777.
    [22]
    Hjeij, R., Lindstrand, A., Francis, R., Zariwala, M.A., Liu, X., Li, Y., Damerla, R., Dougherty, G.W., Abouhamed, M., Olbrich, H., et al., 2013. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am. J. Hum. Genet. 93, 357-367.
    [23]
    Hjeij, R., Onoufriadis, A., Watson, C.M., Slagle, C.E., Klena, N.T., Dougherty, G.W., Kurkowiak, M., Loges, N.T., Diggle, C.P., Morante, N.F., et al., 2014. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am. J. Hum. Genet. 95, 257-274.
    [24]
    Horani, A., Brody, S.L., Ferkol, T.W., Shoseyov, D., Wasserman, M.G., Ta-shma, A., Wilson, K.S., Bayly, P.V., Amirav, I., Cohen-Cymberknoh, M., et al., 2013. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One 8, e72299.
    [25]
    Horani, A., Druley, T.E., Zariwala, M.A., Patel, A.C., Levinson, B.T., Van Arendonk, L.G., Thornton, K.C., Giacalone, J.C., Albee, A.J., Wilson, K.S., et al., 2012. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am. J. Hum. Genet. 91, 685-693.
    [26]
    Huang, N., Xia, Y., Zhang, D., Wang, S., Bao, Y., He, R., Teng, J., Chen, J., 2017. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nat. Commun. 8, 15057.
    [27]
    Ishikawa, T., 2017. Axoneme structure from motile cilia. Cold Spring Harbor Perspect. Biol. 9, a028076.
    [28]
    Jaffe, K.M., Thiberge, SY., Bisher, ME., Burdine, R.D., 2010. Imaging cilia in zebrafish. Methods Cell Biol 97, 415–435.
    [29]
    Jerber, J., Baas, D., Soulavie, F., Chhin, B., Cortier, E., Vesque, C., Thomas, J., Durand, B., 2014. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals. Hum. Mol. Genet. 23, 563-577.
    [30]
    Joo, K., Kim, C.G., Lee, M.S., Moon, H.Y., Lee, S.H., Kim, M.J., Kweon, H.S., Park, W.Y., Kim, C.H., Gleeson, J.G., et al., 2013. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc. Natl. Acad. Sci. U. S. A 110, 5987-5992.
    [31]
    King, S.M., 2016. Axonemal dynein arms. Cold Spring Harbor Perspect. Biol. 8, a028100.
    [32]
    Knowles, M.R., Leigh, M.W., Ostrowski, L.E., Huang, L., Carson, J.L., Hazucha, M.J., Yin, W., Berg, J.S., Davis, S.D., Dell, S.D., et al., 2013a. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am. J. Hum. Genet. 92, 99-106.
    [33]
    Knowles, M.R., Ostrowski, L.E., Loges, N.T., Hurd, T., Leigh, M.W., Huang, L., Wolf, W.E., Carson, J.L., Hazucha, M.J., Yin, W., et al., 2013b. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am. J. Hum. Genet. 93, 711-720.
    [34]
    Kott, E., Duquesnoy, P., Copin, B., Legendre, M., Dastot-Le Moal, F., Montantin, G., Jeanson, L., Tamalet, A., Papon, J.F., Siffroi, J.P., et al., 2012. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 91, 958-964.
    [35]
    Lee, L., 2013. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J. Neurosci. Res. 91, 1117-1132.
    [36]
    Li, P., He, Y., Cai, G., Xiao, F., Yang, J., Li, Q., Chen, X., 2019. CCDC114 is mutated in patient with a complex phenotype combining primary ciliary dyskinesia, sensorineural deafness, and renal disease. J. Hum. Genet. 64, 39-48.
    [37]
    Loges, N.T., Olbrich, H., Becker-Heck, A., Haffner, K., Heer, A., Reinhard, C., Schmidts, M., Kispert, A., Zariwala, M.A., Leigh, M.W., et al., 2009. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am. J. Hum. Genet. 85, 883-889.
    [38]
    Loges, N.T., Olbrich, H., Fenske, L., Mussaffi, H., Horvath, J., Fliegauf, M., Kuhl, H., Baktai, G., Peterffy, E., Chodhari, R., et al., 2008. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 83, 547-558.
    [39]
    Lokaj, M., Kosling, S.K., Koerner, C., Lange, S.M., van Beersum, S.E., van Reeuwijk, J., Roepman, R., Horn, N., Ueffing, M., Boldt, K., et al., 2015. The interaction of CCDC104/BARTL1 with Arl3 and implications for ciliary function. Structure 23, 2122-2132.
    [40]
    Lowery, L.A., Sive, H., 2005. Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development 132, 2057–2067.
    [41]
    Lupas, A., 1996. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21(10), 375-382.
    [42]
    Lupas, A.N., Bassler, J., Dunin-Horkawicz, S., 2017. The structure and topology of alpha-helical coiled coils. Subcell. Biochem. 82, 95-129.
    [43]
    Mahjoub, M.R., Xie, Z., Stearns, T., 2010. Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly. J. Cell Biol. 191, 331-346.
    [44]
    Malicki, J., Avanesov, A., Li, J., Yuan, S., Sun, Z., 2011. Analysis of cilia structure and function in zebrafish. Methods Cell Biol. 101, 39-74.
    [45]
    Mazor, M., Alkrinawi, S., Chalifa-Caspi, V., Manor, E., Sheffield, V.C., Aviram, M., Parvari, R., 2011. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 88, 599-607.
    [46]
    Merveille, A.C., Davis, E.E., Becker-Heck, A., Legendre, M., Amirav, I., Bataille, G., Belmont, J., Beydon, N., Billen, F., Clement, A., et al., 2011. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 43, 72-78.
    [47]
    Mitchison, H.M., Schmidts, M., Loges, N.T., Freshour, J., Dritsoula, A., Hirst, R.A., O'Callaghan, C., Blau, H., Al Dabbagh, M., Olbrich, H., et al., 2012. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 44, 381-389.
    [48]
    Ochi, T., Quarantotti, V., Lin, H., Jullien, J., Rosa, E.S.I., Boselli, F., Barnabas, D.D., Johnson, C.M., McLaughlin, S.H., Freund, S.M.V., et al., 2020. CCDC61/VFL3 is a paralog of SAS6 and promotes ciliary functions. Structure 28, 674-689.
    [49]
    Oda, T., Yanagisawa, H., Kamiya, R., Kikkawa, M., 2014. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346, 857-860.
    [50]
    Olbrich, H., Haffner, K., Kispert, A., Volkel, A., Volz, A., Sasmaz, G., Reinhardt, R., Hennig, S., Lehrach, H., Konietzko, N., et al., 2002. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 30, 143-144.
    [51]
    Olstad, E.W., Ringers, C., Hansen, J.N., Wens, A., Brandt, C., Wachten, D., Yaksi, E., Jurisch-Yaksi, N., 2019. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr. Biol. 29, 229-241.
    [52]
    Omran, H., Kobayashi, D., Olbrich, H., Tsukahara, T., Loges, N.T., Hagiwara, H., Zhang, Q., Leblond, G., O'Toole, E., Hara, C., et al., 2008. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456, 611-616.
    [53]
    Onoufriadis, A., Paff, T., Antony, D., Shoemark, A., Micha, D., Kuyt, B., Schmidts, M., Petridi, S., Dankert-Roelse, J.E., Haarman, E.G., et al., 2013. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum. Genet. 92, 88-98.
    [54]
    Panizzi, J.R., Becker-Heck, A., Castleman, V.H., Al-Mutairi, D.A., Liu, Y., Loges, N.T., Pathak, N., Austin-Tse, C., Sheridan, E., Schmidts, M., et al., 2012. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 44, 714-719.
    [55]
    Pennarun, G., Escudier, E., Chapelin, C., Bridoux, A.M., Cacheux, V., Roger, G., Clement, A., Goossens, M., Amselem, S., Duriez, B., 1999. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65, 1508-1519.
    [56]
    Pizon, V., Gaudin, N., Poteau, M., Cifuentes-Diaz, C., Demdou, R., Heyer, V., Reina San Martin, B., Azimzadeh, J., 2020. hVFL3/CCDC61 is a component of mother centriole subdistal appendages required for centrosome cohesion and positioning. Biol. Cell. 112, 22-37.
    [57]
    Priyanka, P.P., Yenugu, S., 2021. Coiled-coil domain-containing (CCDC) proteins: functional roles in general and male reproductive physiology. Reprod. Sci. 28, 2725-2734.
    [58]
    Rackham, O.J., Madera, M., Armstrong, C.T., Vincent, T.L., Woolfson, D.N., Gough, J., 2010. The evolution and structure prediction of coiled coils across all genomes. J. Mol. Biol. 403, 480-493.
    [59]
    Rose, A., Schraegle, S.J., Stahlberg, E.A., Meier, I., 2005. Coiled-coil protein composition of 22 proteomes--differences and common themes in subcellular infrastructure and traffic control. BMC Evol. Biol. 5, 66.
    [60]
    Silva, E., Betleja, E., John, E., Spear, P., Moresco, J.J., Zhang, S., Yates, J.R., 3rd, Mitchell, B.J., Mahjoub, M.R., 2016. Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry. Mol. Biol. Cell 27, 48-63.
    [61]
    Stetefeld, J., Jenny, M., Schulthess, T., Landwehr, R., Engel, J., Kammerer, R.A., 2000. Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nat. Struct. Biol. 7, 772-776.
    [62]
    Sui, W., Hou, X., Che, W., Ou, M., Sun, G., Huang, S., Liu, F., Chen, P., Wei, X., Dai, Y., 2016. CCDC40 mutation as a cause of primary ciliary dyskinesia: a case report and review of literature. Clin. Res. J. 10, 614-621.
    [63]
    Tarkar, A., Loges, N.T., Slagle, C.E., Francis, R., Dougherty, G.W., Tamayo, J.V., Shook, B., Cantino, M., Schwartz, D., Jahnke, C., et al., 2013. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 45, 995-1003.
    [64]
    Thisse, C., Thisse, B., 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69.
    [65]
    Truebestein, L., Leonard, T.A., 2016. Coiled-coils: the long and short of it. Bioessays 38, 903-916.
    [66]
    Walczak, C.E., Nelson, D.L., 1994. Regulation of dynein-driven motility in cilia and flagella. Cell Motil Cytoskeleton 27, 101-107.
    [67]
    Wu, D.H., Singaraja, R.R., 2013. Loss-of-function mutations in CCDC114 cause primary ciliary dyskinesia. Clin. Genet. 83, 526-527.
    [68]
    Zariwala, M.A., Gee, H.Y., Kurkowiak, M., Al-Mutairi, D.A., Leigh, M.W., Hurd, T.W., Hjeij, R., Dell, S.D., Chaki, M., Dougherty, G.W., et al., 2013. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum. Genet. 93, 336-345.
    [69]
    Zhang, X., Jia, S., Chen, Z., Chong, Y.L., Xie, H., Feng, D., Wu, X., Song, D.Z., Roy, S., Zhao, C., 2018. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat. Genet. 50, 1666-1673.
    [70]
    Zhao, L., Xie, H., Kang, Y., Lin, Y., Liu, G., Sakato-Antoku, M., Patel-King, R.S., Wang, B., Wan, C., King, S.M., Zhao, C., Huang, K., 2021. Heme-binding protein CYB5D1 is a radial spoke component required for coordinated ciliary beating. Proc. Natl. Acad. Sci. U. S. A 118, e201568911.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads (85) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return