[1] |
Albert, P.S., Zhang, T., Semrau, K., Rouillard, J.M., Kao, Y.H., Wang, C.J.R., Danilova, T.V., Jiang, J., Birchler, J.A., 2019. Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc. Natl. Acad. Sci. U. S. A. 116, 1679-1685.
|
[2] |
Belser, C., Baurens, F.C., Noel, B., Martin, G., Aury, J.M., 2021. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun. Biol. 4, 1047.
|
[3] |
Beying, N., Schmidt, C., Pacher, M., Houben, A., Puchta, H., 2020. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in arabidopsis. Nat. Plants 6, 638-645.
|
[4] |
Bi, Y., Zhao, Q., Yan, W., Li, M., Liu, Y., Cheng, C., Zhang, L., Yu, X., Li, J., Qian, C., et al., 2020. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in cucumis. Plant J. 102, 178-186.
|
[5] |
Braz, G.T., He, L., Zhao, H., Zhang, T., Semrau, K., Rouillard, J.M., Torres, G.A., Jiang, J., 2018. Comparative oligo-fish mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208, 513-523.
|
[6] |
Cao, H., Biswas, M.K., Yan, L., Amar, M.H., Tong, Z., Qiang, X., Xu, J., Guo, W., Deng, X., 2011. Doubled haploid callus lines of valencia sweet orange recovered from anther culture. Plant Cell Tissue Organ 104, 415-423.
|
[7] |
Carvalho, R., Filho, W.S., Brasileiro-Vidal, A.C., Guerra, M., 2005. The relationships among lemons, limes and citron: a chromosomal comparison. Cytogenet. Genome Res. 109, 276-282.
|
[8] |
Cheng, M., Li, X., Cui, H., Sun, H., Deng, T., Song, X., Song, R., Wang, T., Wang, Z., Wang, H., et al., 2022. FISH-based “pan” and “core” karyotypes reveal genetic diversification of roegneria ciliaris. J. Genet. Genom.
|
[9] |
Chenqiao, Zhu, Xiongjie, Zheng, Yue, Huang, Junli, Peng, Chen, Chenglei, 2019. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering mini citrus (Fortunella hindsii). Plant Biotechnol. J. 17, 2199-2210.
|
[10] |
Deng, H., Cai, Z., Xiang, S., Guo, Q., Huang, W., Liang, G., 2019. Karyotype analysis of diploid and spontaneously occurring tetraploid blood orange [Citrus sinensis (L.) Osbeck] using multicolor fish with repetitive DNA sequences as probes. Front. Plant Sci. 10, 311.
|
[11] |
Deng, H., Tang, G., Xu, N., Gao, Z., Lin, L., Liang, D., Xia, H., Deng, Q., Wang, J., Cai, Z., et al., 2020. Integrated karyotypes of diploid and tetraploid carrizo citrange (Citrus sinensis L. Osbeck x Poncirus trifoliata L. Raf.) as determined by sequential multicolor fluorescence in situ hybridization with tandemly repeated DNA sequences. Front. Plant Sci. 11, 569.
|
[12] |
Dong, G., Shen, J., Zhang, Q., Wang, J., Yu, Q., Ming, R., Wang, K., Zhang, J., 2018. Development and applications of chromosome-specific cytogenetic bac-fish probes in S. Spontaneum. Front. Plant Sci. 9, 218.
|
[13] |
Guerra, 1993. Cytogenetics of rutaceae. V. High chromosomal variability in Citrus species revealed by CMA/DAPI staining. Heredity 71, 234-241.
|
[14] |
Guerra, M., Santos, K., Silva, A., Ehrendorfer, F., 2000. Heterochromatin banding patterns in rutaceae-aurantioideae - a case of parallel chromosomal evolution. Am. J. Bot. 87.
|
[15] |
Han, Y., Zhang, T., Thammapichai, P., Weng, Y., Jiang, J., 2015. Chromosome-specific painting in cucumis species using bulked oligonucleotides. Genetics 200, 771.
|
[16] |
Hao, Z., Lv, D., Ge, Y., Shi, J., Weijers, D., Yu, G., Chen, J., 2020. Rideogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput. Sci. 6, e251.
|
[17] |
He, L., Zhao, H., He, J., Yang, Z., Guan, B., Chen, K., Hong, Q., Wang, J., Liu, J., Jiang, J., 2020. Extraordinarily conserved chromosomal synteny of citrus species revealed by chromosome-specific painting. Plant J. 103, 2225-2235.
|
[18] |
Hofstatter, P.G., Thangavel, G., Lux, T., Neumann, P., Vondrak, T., Novak, P., Zhang, M., Costa, L., Castellani, M., Scott, A., et al., 2022. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185, 3153-3168 e3118.
|
[19] |
Huang, D., Wu, W., Zhou, Y., Hu, Z., Lu, L., 2004. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (citrus grandis) as a model. I. Construction of single chromosomal DNA libraries. Theor. Appl. Genet. 108, 1366-1370.
|
[20] |
Huang, X., Huang, S., Han, B., Li, J., 2022. The integrated genomics of crop domestication and breeding. Cell 185, 2828-2839.
|
[21] |
Ibiapino, A., Baez, M., Garcia, M.A., Costea, M., Stefanovic, S., Pedrosa-Harand, A., 2022. Karyotype asymmetry in Cuscuta l. Subgenus Pachystigma reflects its repeat DNA composition. Chromosome Res. 30, 91-107.
|
[22] |
Iovene, M., Wielgus, S.M., Simon, P.W., Buell, C.R., Jiang, J., 2008. Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180, 1307.
|
[23] |
Iwamasa, M. 1970. Chromosome Aberrations in Citrus in Relation to Sterility and Seedlessness.
|
[24] |
Jiang, J., 2019. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res. 27, 153-165.
|
[25] |
Jiang, X., Song, Q., Ye, W., Chen, Z.J., 2021. Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids. Nat. Ecol. Evol. 5, 1382-1393.
|
[26] |
Lan, H., Chen, C.L., Miao, Y., Yu, C.X., Deng, X.X., 2016. Fragile sites of ‘valencia’ sweet orange (Citrus sinensis) chromosomes are related with active 45s rDNA. PLoS One 11, e0151512.
|
[27] |
Leitch, A.R., Leitch, I.J., 2008. Genomic plasticity and the diversity of polyploid plants. Science 320, 481-483.
|
[28] |
Liu, J., Seetharam, A.S., Chougule, K., Ou, S., Swentowsky, K.W., Gent, J.I., Llaca, V., Woodhouse, M.R., Manchanda, N., Presting, G.G., et al., 2020. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 21, 121.
|
[29] |
Liu, H., Wang, X., Liu, S., Huang, Y., Guo, Y.X., Xie, W.Z., Liu, H., Tahir Ul Qamar, M., Xu, Q., Chen, L.L., 2022. Citrus pan-genome to breeding database (CPBD): a comprehensive genome database for citrus breeding. Mol. Plant
|
[30] |
Martins, L., Yu, F., Zhao, H., Dennison, T., Jiang, J., 2019. Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nat. Commun. 10.
|
[31] |
Melters, D.P., Bradnam, K.R., Young, H.A., Telis, N., May, M.R., Ruby, J.G., Sebra, R., Peluso, P., Eid, J., Rank, D., et al., 2013. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 14, R10.
|
[32] |
Mendes, S., Moraes, A.P., Mirkov, T.E., Pedrosa-Harand, A., 2011. Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. As evidenced by comparative cytogenetic mapping. Chromosome Res. 19, 521-530.
|
[33] |
Meng, Z., Han, J., Lin, Y., Zhao, Y., Wang, K., 2020. Characterization of a saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus saccharum. Theor. Appl. Genet. 133.
|
[34] |
Meng, Z., Zhang, Z., Yan, T., Lin, Q., Wang, Y., Huang, W., Huang, Y., Li, Z., Yu, Q., Wang, J., 2018. Comprehensively characterizing the cytological features of saccharum spontaneum by the development of a complete set of chromosome-specific oligo probes. Front. Plant Sci. 9.
|
[35] |
Mukai, Y., Nakahara, Y., Yamamoto, M., 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36, 489-494.
|
[36] |
Naish, M., Alonge, M., Wlodzimierz, P., Tock, A.J., Abramson, B.W., Schmucker, A., Mandakova, T., Jamge, B., Lambing, C., Kuo, P., et al., 2021. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374, eabi7489.
|
[37] |
Navratilova, P., Toegelova, H., Tulpova, Z., Kuo, Y.T., Stein, N., Dolezel, J., Houben, A., Simkova, H., Mascher, M., 2022. Prospects of telomere-to-telomere assembly in barley: analysis of sequence gaps in the morexv3 reference genome. Plant Biotechnol. J. 20, 1373-1386.
|
[38] |
Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A.V., Mikheenko, A., Vollger, M.R., Altemose, N., Uralsky, L., Gershman, A., et al., 2022. The complete sequence of a human genome. Science 376, 44-53.
|
[39] |
Oliveira, L.C., Torres, G.A., 2018. Plant centromeres: genetics, epigenetics and evolution. Mol. Biol. Rep. 45, 1491-1497.
|
[40] |
Pedrosa, A., Schweizer, D., Guerra, M., 2000. Cytological heterozygosity and the hybrid origin of sweet orange [Citrus sinensis (l.) Osbeck]. Theor. Appl. Genet. 100, 361-367.
|
[41] |
Prall, T.M., Neumann, E.K., Karl, J.A., Shortreed, C.G., Baker, D.A., Bussan, H.E., Wiseman, R.W., O'Connor, D.H., 2021. Consistent ultra-long DNA sequencing with automated slow pipetting. BMC Genom. 22, 182.
|
[42] |
Ronspies, M., Schindele, P., Wetzel, R., Puchta, H., 2022a. CRISPR-Cas9-mediated chromosome engineering in Arabidopsis thaliana. Nat. Protoc. 17, 1332-1358.
|
[43] |
Ronspies, M., Schmidt, C., Schindele, P., Lieberman-Lazarovich, M., Houben, A., Puchta, H., 2022b. Massive crossover suppression by CRISPR-Cas-mediated plant chromosome engineering. Nat. Plants.
|
[44] |
Schmidt, C., Fransz, P., Ronspies, M., Dreissig, S., Fuchs, J., Heckmann, S., Houben, A., Puchta, H., 2020. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat. Commun. 11, 4418.
|
[45] |
Schmidt, C., Pacher, M., Puchta, H., 2019. Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. Plant J. 98, 577-589.
|
[46] |
Silva, A., Marques, A., Santos, K., Guerra, M., 2010. The evolution of CMA bands in Citrus and related genera. Chromosome Res. 18, 503-514.
|
[47] |
Soltis, D.E., Visger, C.J., Soltis, P.S., 2014. The polyploidy revolution then…and now: Stebbins revisited. Am. J. Bot. 101, 1057-1078.
|
[48] |
Song, J.M., Xie, W.Z., Wang, S., Guo, Y.X., Chen, L.L., 2021. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant, S1674-2052(1621)00230-00236.
|
[49] |
Talon, M.,Gmitter, F.G., Jr., 2008. Citrus genomics. Int. J. Plant Genom. 2008, 528361.
|
[50] |
Wang, L., Huang, Y., Liu, Z., He, J., Jiang, X., He, F., Lu, Z., Yang, S., Chen, P., Yu, H., et al., 2021. Somatic variations led to the selection of acidic and acidless orange cultivars. Nat. Plants 7, 954-965.
|
[51] |
Wendel, J.F., Jackson, S.A., Meyers, B.C., Wing, R.A., 2016. Evolution of plant genome architecture. Genome Biol. 17, 37.
|
[52] |
Wu, G.A., Terol, J., Ibanez, V., Lopez-Garcia, A., Perez-Roman, E., Borreda, C., Domingo, C., Tadeo, F.R., Carbonell-Caballero, J., Alonso, R., 2018. Genomics of the origin and evolution of citrus. Nature 554, 311-316.
|
[53] |
Xia, Wang, Yuantao, Xu, Siqi, Zhang, Li, Cao, Yue, Huang, 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 49, 765-772.
|
[54] |
Xia, Q.M., Miao, L.K., Xie, K.D., Yin, Z.P., Wu, X.M., Chen, C.L., Grosser, J.W., Guo, W.W., 2020. Localization and characterization of citrus centromeres by combining half-tetrad analysis and cenh3-associated sequence profiling. Plant Cell Rep. 39, 1609-1622.
|
[55] |
Xin, H., Zhang, T., Wu, Y., Zhang, W., Zhang, P., Xi, M., Jiang, J., 2020. An extraordinarily stable karyotype of the woody populus species revealed by chromosome painting. Plant J. 101, 253-264.
|
[56] |
Xu, Q., Chen, L.L., Ruan, X., Chen, D., Zhu, A., Chen, C., Bertrand, D., Jiao, W.B., Hao, B.H., Lyon, M.P., et al., 2013. The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 45, 59-66.
|
[57] |
Yu, C., Deng, X., Chen, C., 2019. Chromosomal characterization of a potential model mini-citrus (Fortunella hindsii). Tree Genet. Genomes 15.
|
[58] |
Yu, F., Zhao, X., Chai, J., Ding, X., Li, X., Huang, Y., Wang, X., Wu, J., Zhang, M., Yang, Q., et al., 2021. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol. 233, 1953-1965.
|
[59] |
Yuan, Y., Scheben, A., Edwards, D., Chan, T.F., 2021. Toward haplotype studies in polyploid plants to assist breeding. Mol. Plant 14, 1969-1972.
|
[60] |
Zhao, Q., Meng, Y., Wang, P., Qin, X., Cheng, C., Zhou, J., Yu, X., Li, J., Lou, Q., Jahn, M., et al., 2021. Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus Cucumis. Plant J. 107, 1243-1259.
|
[61] |
Zheng, J.S., Sun, C.Z., Zhang, S.N., Hou, X.L., Bonnema, G., 2016. Cytogenetic diversity of simple sequences repeats in morphotypes of Brassica rapa ssp. Chinensis. Front. Plant Sci. 7, 1049.
|
[62] |
Zhou, C., Olukolu, B., Gemenet, D.C., Wu, S., Gruneberg, W., Cao, M.D., Fei, Z., Zeng, Z.B., George, A.W., Khan, A., et al., 2020. Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nat. Genet. 52, 1256-1264.
|