[1] |
Araus, J.L., Cairns, J.E., 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52-61.
|
[2] |
Asefa, M., Cao, M., He, Y., Mekonnen, E., Song, X., Yang, J., 2020. Ethiopian vegetation types, climate and topography. Plant Divers. 42, 302-311.
|
[3] |
Bad,r A., Muller, K, Schafer-Pregl, R., El Rabey, H., Effgen, S., Ibrahim, H.H., Pozzi, C., Rohde, W., Salamini, F., 2000. On the origin and domestication history of Barley (Hordeum vulgare). Mol. Biol. Evol. 17, 499-510.
|
[4] |
Bi, X., van Esse, W., Mulki, M.A., Kirschner, G., Zhong, J., Simon, R., von Korff, M., 2019. CENTRORADIALIS Interacts with FLOWERING LOCUS T-Like Genes to Control Floret Development and Grain Number. Plant Physiol. 180, 1013-1030.
|
[5] |
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
|
[6] |
Bort, J., Febrero, A., Amaro, T., Araus, J.L., 1994. Role of awns in ear water-use efficiency and grain weight in barley. Agronomie 14, 133-139.
|
[7] |
Bush, W.S., Moore, J.H., 2012. Chapter 11: Genome-Wide Association Studies. PLOS Comput. Biol. 8, e1002822.
|
[8] |
Bustos-Korts, D., Dawson, I.K., Russell, J., Tondelli, A., Guerra, D., Ferrandi, C., Strozzi, F., Nicolazzi, E.L., Molnar-Lang, M., Ozkan, H., et al., 2019. Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley. Plant J. 99, 1172-1191.
|
[9] |
Canci, P.C., Nduulu, L.M., Dill-Macky, R., Muehlbauer, G.J., Rasmusson, D.C., Smith, K.P., 2003. Genetic Relationship between Kernel Discoloration and Grain Protein Concentration in Barley. Crop Sci. 43, 1671-1679.
|
[10] |
Chen, K., Lyskowski, A., Jaremko, L., Jaremko, M., 2021. Genetic and Molecular Factors Determining Grain Weight in Rice. Front. Plant Sci. 12, 605799.
|
[11] |
Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92.
|
[12] |
Dai, F., Chen, Z-H., Wang, X., Li, Z., Jin, G., Wu, D., Cai, S., Wang, N., Wu, F., Nevo, E., et al., 2014. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proc. Natl. Acad. Sci. U. S. A. 111, 13403-13408.
|
[13] |
Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., et al., 2021. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008.
|
[14] |
Fernandez-Calleja, M., Casas, A.M., Igartua, E., 2021. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. Theor. Appl. Genet. 134, 1867-1897.
|
[15] |
Franckowiak, J.D., 1997. Short rachilla hair 1. Barley Genet. Newsl. 26, 269.
|
[16] |
Franckowiak, J.D., Konishi, T., 1997. Hairy leaf sheath. Barley Genet. Newsl. 26, 202.
|
[17] |
Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H., Zhang, D., 2010. The SEPALLATA-Like Gene OsMADS34 Is Required for Rice Inflorescence and Spikelet Development. Plant Physiol. 153, 728-740.
|
[18] |
Garcia-Gimenez, G., Jobling, S.A., 2022. Gene editing for barley grain quality improvement. J. Cereal Sci. 103, 103394.
|
[19] |
Gorafi, Y.S.A., Kim, J-S., Elbashir, A.A.E., Tsujimoto, H., 2018. A population of wheat multiple synthetic derivatives: an effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement. Theor. Appl. Genet. 131, 1615-1626.
|
[20] |
Guo, X., Sarup, P., Jensen, J.D., Orabi, J., Kristensen, N.H., Mulder, F.A.A., Jahoor, A., Jensen, J., 2020. Genetic Variance of Metabolomic Features and Their Relationship With Malting Quality Traits in Spring Barley. Front. Plant Sci. 11, 575467.
|
[21] |
Haas, M., Schreiber, M., Mascher, M., 2019. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 61, 204-225.
|
[22] |
He, F., Pasam, R., Shi, F., Kant, S., Keeble-Gagnere, G., Kay, P., Forrest, K., Fritz, A., Hucl, P., Wiebe, K., et al., 2019. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896-904.
|
[23] |
Hirayama, T., Saisho, D., Matsuura, T., Okada, S., Takahagi, K., Kanatani, A., Ito, J., Tsuji, H., Ikeda, Y., Mochida, K., 2020. Life-Course Monitoring of Endogenous Phytohormone Levels under Field Conditions Reveals Diversity of Physiological States among Barley Accessions. Plant Cell Physiol. 61, 1438-1448.
|
[24] |
Hisano, H., Abe, F., Hoffie, R.E., Kumlehn, J., 2021. Targeted genome modifications in cereal crops. Breed. Sci. 71, 405-416.
|
[25] |
Huang, B., Huang, D., Hong, Z., Owie, S.O., Wu, W., 2020. Genetic analysis reveals four interacting loci underlying awn trait diversity in barley (Hordeum vulgare). Sci. Rep. 10, 12535.
|
[26] |
Huang, B., Wu, W., Hong, Z., 2021. Genetic Interactions of Awnness Genes in Barley. Genes 12, 606.
|
[27] |
Huang, M., Liu, X., Zhou, Y., Summers, R.M., Zhang, Z., 2019. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 8, giy154.
|
[28] |
Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V.S., Gundlach, H., Monat, C., Lux, T., Kamal, N., Lang, D., Himmelbach, A., et al., 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284-289.
|
[29] |
Jia, Y., Westcott, S., He, T., McFawn, L.A., Angessa, T., Hill, C., Tan, C., Zhang, X., Zhou, G., Li, C., 2021. Genome-wide association studies reveal QTL hotspots for grain brightness and black point traits in barley. Crop J. 9, 154-167.
|
[30] |
Karunarathne, S.D., Han, Y., Zhang, X-Q., Li, C., 2022. CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for HvARE1 in improvement of nitrogen use efficiency in barley. J. Integr. Plant Biol. 64, 756-770.
|
[31] |
Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., et al., 2007. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. U. S. A. 104, 1424-1429.
|
[32] |
Kumar, A., Kumar, S., Singh, K.B.M., Prasad, M., Thakur, J.K., 2020. Designing a Mini-Core Collection Effectively Representing 3004 Diverse Rice Accessions. Plant Commun. 1, 100049.
|
[33] |
Kurata, N., Satoh, H., Kitano, H., Nagato, Y., Endo, T., Sato, K., Akashi, R., Ezura, H., Kusaba, M., Kobayashi, M., et al., 2010. NBRP, National Bioresource Project of Japan and plant bioresource management. Breed. Sci. 60, 461-468.
|
[34] |
Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
|
[35] |
Liang, Z., Qiu, Y., Schnable, J.C., 2020. Genome-Phenome Wide Association in Maize and Arabidopsis Identifies a Common Molecular and Evolutionary Signature. Mol. Plant 13, 907-922.
|
[36] |
Lister, D.L., Jones, H., Oliveira, H.R., Petrie, C.A., Liu, X., Cockram, J., Kneale, C.J., Kovaleva, O., Jones, M.K., 2018. Barley heads east: Genetic analyses reveal routes of spread through diverse Eurasian landscapes. PLoS ONE 13, e0196652.
|
[37] |
Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 12, e1005767.
|
[38] |
Lu, X., Kracher, B., Saur, I.M.L., Bauer, S., Ellwood, S.R., Wise, R., Yaeno, T., Maekawa, T., Schulze-Lefert, P., 2016. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc. Natl. Acad. Sci. U. S. A. 113, E6486-E6495.
|
[39] |
Lu, Y., Liu, Y., Niu, X., Yang, Q., Hu, X., Zhang, H-Y., Xia, J., 2015. Systems Genetic Validation of the SNP-Metabolite Association in Rice Via Metabolite-Pathway-Based Phenome-Wide Association Scans. Front. Plant Sci. 6, 1027.
|
[40] |
Ma, Y., Liu, M., Stiller, J., Liu, C., 2019. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics 20, 12.
|
[41] |
Mayer, K.F.X., Waugh, R., Langridge, P., Close, T.J., Wise, R.P., Graner, A., Matsumoto, T., Sato, K., Schulman, A., Muehlbauer, G.J., et al., 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711-716.
|
[42] |
McCouch, S.R., Wright, M.H., Tung, C-W., Maron, L.G., McNally, K.L., Fitzgerald, M., Singh, N., DeClerck, G., Agosto-Perez, F., Korniliev, P., et al., 2016. Open access resources for genome-wide association mapping in rice. Nat. Commun. 7, 10532.
|
[43] |
Milner, S.G., Jost, M., Taketa, S., Mazon, E.R., Himmelbach, A., Oppermann, M., Weise, S., Knupffer, H., Basterrechea, M., Konig, P., et al., 2019. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319-326.
|
[44] |
Mochida, K., Nishii, R., Hirayama, T., 2020. Decoding Plant-Environment Interactions That Influence Crop Agronomic Traits. Plant Cell Physiol. 61, 1408-1418.
|
[45] |
Morey, S.R., Hirose, T., Hashida, Y., Miyao, A., Hirochika, H., Ohsugi, R., Yamagishi, J., Aoki, N., 2019. Characterisation of a rice vacuolar invertase isoform, OsINV2, for growth and yield-related traits. Funct. Plant Biol. 46, 777-785.
|
[46] |
Morris, G.P., Ramu, P., Deshpande, S.P., Hash, C.T., Shah, T., Upadhyaya, H.D., Riera-Lizarazu, O., Brown, P.J., Acharya, C.B., Mitchell, S.E., et al., 2013. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. U. S. A. 110, 453-458.
|
[47] |
Niu, J., Zheng, S., Shi, X., Si, Y., Tian, S., He, Y., Ling, H-Q., 2020. Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.). Crop J. 8, 613-622.
|
[48] |
Nordborg M, Weigel D, 2008. Next-generation genetics in plants. Nature 456: 720-723.
|
[49] |
Qiu, L-J., Xing, L-L., Guo, Y., Wang, J., Jackson, S.A., Chang, R-Z., 2013. A platform for soybean molecular breeding: the utilization of core collections for food security. Plant Mol. Biol. 83, 41-50.
|
[50] |
Raj, A., Stephens, M., Pritchard, J.K., 2014. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 197, 573-589.
|
[51] |
Rebetzke, G.J., Bonnett, D.G., Reynolds, M.P., 2016. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J. Exp. Bot. 67, 2573-2586.
|
[52] |
Romero, C.C.T., Vels, A., Niks, R.E., 2018. Identification of a large-effect QTL associated with kernel discoloration in barley. J. Cereal Sci. 84, 62-70.
|
[53] |
Roohanitaziani, R., de Maagd, R.A., Lammers, M., Molthoff, J., Meijer-Dekens, F., van Kaauwen, M.P.W., Finkers, R., Tikunov, Y., Visser, R.G.F., Bovy, A.G., 2020. Exploration of a Resequenced Tomato Core Collection for Phenotypic and Genotypic Variation in Plant Growth and Fruit Quality Traits. Genes 11, 1278.
|
[54] |
Russell, J., Mascher, M., Dawson, I.K., Kyriakidis, S., Calixto, C., Freund, F., Bayer, M., Milne, I., Marshall-Griffiths, T., Heinen, S., et al., 2016. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat. Genet. 48, 1024-1030.
|
[55] |
Saade, S., Kutlu, B., Draba, V., Forster, K., Schumann, E., Tester, M., Pillen, K., Maurer, A., 2017. A donor-specific QTL, exhibiting allelic variation for leaf sheath hairiness in a nested association mapping population, is located on barley chromosome 4H. PLoS One 12, e0189446.
|
[56] |
Sato K, 2020. History and future perspectives of barley genomics. DNA Res. 27: dsaa023.
|
[57] |
Sato, K., Ishii, M., Takahagi, K., Inoue, K., Shimizu, M., Uehara-Yamaguchi, Y., Nishii, R., Mochida, K., 2020. Genetic Factors Associated with Heading Responses Revealed by Field Evaluation of 274 Barley Accessions for 20 Seasons. iScience 23, 101146.
|
[58] |
Shin, J-H., Blay, S., McNeney, B., Graham, J., 2006. LDheatmap: An R Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. J. Stat. Softw. 16, 1-9.
|
[59] |
Surana, P., Xu, R., Fuerst, G., Chapman, A.V.E., Nettleton, D., Wise, R.P., 2017. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen. G3 7, 3317-3329.
|
[60] |
Swarts, K., Li, H., Romero Navarro, J.A., An, D., Romay, M.C., Hearne, S., Acharya, C., Glaubitz, J.C., Mitchell, S., Elshire, R.J., et al., 2014. Novel Methods to Optimize Genotypic Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants. Plant Genome 7, plantgenome2014.05.0023.
|
[61] |
Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.
|
[62] |
Takahagi, K., Uehara-Yamaguchi, Y., Yoshida, T., Sakurai, T., Shinozaki, K., Mochida, K., Saisho, D., 2016. Analysis of single nucleotide polymorphisms based on RNA sequencing data of diverse bio-geographical accessions in barley. Sci. Rep. 6, 33199.
|
[63] |
Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., et al., 2008. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. U. S. A. 105, 4062-4067.
|
[64] |
Taketa, S., you, T., Sakurai, Y., Miyake, S., Ichii, M., 2011. Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on barley chromosome 7H. Breed. Sci. 61, 80-85.
|
[65] |
Tam, V., Patel, N., Turcotte, M., Bosse, Y., Pare, G., Meyre, D., 2019. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467-484.
|
[66] |
Thudi, M., Palakurthi, R., Schnable, J.C., Chitikineni, A., Dreisigacker, S., Mace, E., Srivastava, R.K., Satyavathi, C.T., Odeny, D., Tiwari, V.K., et al., 2021. Genomic resources in plant breeding for sustainable agriculture. J. Plant Physiol. 257, 153351.
|
[67] |
Turner, S.D., 2018. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. J. Open Source Softw. 3, 731.
|
[68] |
Uffelmann, E., Huang, Q.Q., Munung, N.S., de Vries, J., Okada, Y., Martin, A.R., Martin, H.C., Lappalainen, T., Posthuma, D., 2021. Genome-wide association studies. Nat. Rev. Methods Primer 1, 59.
|
[69] |
Wang, J., Zhang, Z., 2021. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genome. Proteom. Biorinfom. 19, 629-640.
|
[70] |
Yang, Y., Saand, M.A., Huang, L., Abdelaal, W.B., Zhang, J., Wu, Y., Li, J., Sirohi, M.H., Wang, F., 2021. Applications of Multi-Omics Technologies for Crop Improvement. Front. Plant Sci. 12, 563953.
|
[71] |
Yuo, T., Yamashita, Y., Kanamori, H., Matsumoto, T., Lundqvist, U., Sato, K., Ichii, M., Jobling, S.A., Taketa, S., 2012. A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J. Exp. Bot. 63, 5223-5232.
|