5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 3
Mar.  2023
Turn off MathJax
Article Contents

GTPase-activating protein TBC1D5 coordinates with retromer to constrain synaptic growth by inhibiting BMP signaling

doi: 10.1016/j.jgg.2022.11.009
Funds:

We thank members of the He and Xie laboratory for suggestions and discussion during the course of this work. We further thank the Bloomington Stock Center, Vienna Drosophila Resource Center, and Tsinghua Fly Center for fly stocks. This work was supported by research grants from the National Natural Science Foundation of China (31671510 and 31871461 to H. H.

31771592 to W. X.).

  • Received Date: 2022-11-01
  • Accepted Date: 2022-11-22
  • Rev Recd Date: 2022-11-22
  • Publish Date: 2022-12-05
  • Formation and plasticity of neural circuits rely on precise regulation of synaptic growth. At Drosophila neuromuscular junction (NMJ), Bone Morphogenetic Protein (BMP) signaling is critical for many aspects of synapse formation and function. The evolutionarily conserved retromer complex and its associated GTPase-activating protein TBC1D5 are critical regulators of membrane trafficking and cellular signaling. However, their functions in regulating the formation of NMJ are less understood. Here, we report that TBC1D5 is required for inhibition of synaptic growth, and loss of TBC1D5 leads to abnormal presynaptic terminal development, including excessive satellite boutons and branch formation. Ultrastructure analysis reveals that the size of synaptic vesicles and the density of subsynaptic reticulum are increased in TBC1D5 mutant boutons. Disruption of interactions of TBC1D5 with Rab7 and retromer phenocopies the loss of TBC1D5. Unexpectedly, we find that TBC1D5 is functionally linked to Rab6, in addition to Rab7, to regulate synaptic growth. Mechanistically, we show that loss of TBC1D5 leads to upregulated BMP signaling by increasing the protein level of BMP type II receptor Wishful Thinking (Wit) at NMJ. Overall, our data establish that TBC1D5 in coordination with retromer constrains synaptic growth by regulating Rab7 activity, which negatively regulates BMP signaling through inhibiting Wit level.
  • loading
  • [1]
    Aberle, H., Haghighi, A.P., Fetter, R.D., McCabe, B.D., Magalhaes, T.R., Goodman, C.S., 2002. Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545-558.
    [2]
    Akbergenova, Y., Littleton, J.T., 2017. Pathogenic Huntington Alters BMP Signaling and Synaptic Growth through Local Disruptions of Endosomal Compartments. J. Neurosci. 37, 3425-3439.
    [3]
    Albert, S., Will, E., Gallwitz, D., 1999. Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases. EMBO J. 18, 5216-5225.
    [4]
    Ataman, B., Ashley, J., Gorayca, D., Gorczyca, M., Mathew, D., Wichmann, C., Sigrist, S.J., Budnik, V., 2006. Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP. Proc. Natl. Acad. Sci. U. S. A. 103, 7841-7846.
    [5]
    Ball, R.W., Warren-Paquin, M., Tsurudome, K., Liao, E.H., Elazzouzi, F., Cavanagh, C., An, B.-S., Wang, T.-T., White, J.H., Haghighi, A.P., 2010. Retrograde BMP signaling controls synaptic growth at the NMJ by regulating trio expression in motor neurons. Neuron 66, 536-549.
    [6]
    Berke, B., Wittnam, J., McNeill, E., Van Vactor, D.L., Keshishian, H., 2013. Retrograde BMP Signaling at the Synapse: A Permissive Signal for Synapse Maturation and Activity-Dependent Plasticity. J. Neurosci. 33, 17937-17950.
    [7]
    Brent, J.R., Werner, K.M., McCabe, B.D., 2009. Drosophila larval NMJ dissection. J Vis Exp 24, e1107.
    [8]
    Bucci, C., Parton, R.G., Mather, I.H., Stunnenberg, H., Simons, K., Hoflack, B., Zerial, M., 1992. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715-728.
    [9]
    Buczynski, G., Bush, J., Zhang, L., Rodriguez-Paris, J., Cardelli, J., 1997. Evidence for a recycling role for Rab7 in regulating a late step in endocytosis and in retention of lysosomal enzymes in Dictyostelium discoideum. Mol. Biol. Cell 8, 1343-1360.
    [10]
    Carrillo, R.A., Ozkan, E., Menon, K.P., Nagarkar-Jaiswal, S., Lee, P.T., Jeon, M., Birnbaum, M.E., Bellen, H.J., Garcia, K.C., Zinn, K., 2015. Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins. Cell 163, 1770-1782.
    [11]
    Cherry, S., Jin, E.J., Ozel, M.N., Lu, Z., Agi, E., Wang, D., Jung, W.-H., Epstein, D., Meinertzhagen, I.A., Chan, C.-C., Hiesinger, P.R., Jennifer Jin, E., Neset Ozel, M., Lu, Z., Agi, E., Wang, D., Jung, W.-H., Epstein, D., Meinertzhagen, I.A., Chan, C.-C., Robin Hiesinger, P., 2013. Charcot-Marie-Tooth 2B mutations in rab7 cause dosage-dependent neurodegeneration due to partial loss of function. Elife 2, 1064.
    [12]
    Choudhury, S.D., Dwivedi, M.K., Pippadpally, S., Patnaik, A., Mishra, S., Padinjat, R., Kumar, V., 2022. AP2 regulates Thickveins trafficking to attenuate NMJ growth signaling in Drosophila. eneuro 9, ENEURO.0044-22.2022.
    [13]
    Dickman, D.K., Lu, Z., Meinertzhagen, I.A., Schwarz, T.L., 2006. Altered synaptic development and active zone spacing in endocytosis mutants. Curr. Biol. 16, 591-598.
    [14]
    Dunst, S., Kazimiers, T., von Zadow, F., Jambor, H., Sagner, A., Brankatschk, B., Mahmoud, A., Spannl, S., Tomancak, P., Eaton, S., Brankatschk, M., 2015. Endogenously Tagged Rab Proteins: A Resource to Study Membrane Trafficking in Drosophila. Dev. Cell 33, 351-365.
    [15]
    Feng, Y., Ueda, A., Wu, C.F., 2004. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J. Neurogenet. 18, 377-402.
    [16]
    Gillingham, A.K., Sinka, R., Torres, I.L., Lilley, K.S., Munro, S., 2014. Toward a Comprehensive Map of the Effectors of Rab GTPases. Dev. Cell 31, 358-373.
    [17]
    Goold, C.P., Davis, G.W., 2007. The BMP Ligand Gbb Gates the Expression of Synaptic Homeostasis Independent of Synaptic Growth Control. Neuron 56, 109-123.
    [18]
    Gorvel, J.-P., Chavrier, P., Zerial, M., Gruenberg, J., 1991. rab5 controls early endosome fusion in vitro. Cell 64, 915-925.
    [19]
    Gramates, L.S., Marygold, S.J., Dos Santos, G., Urbano, J.M., Antonazzo, G., Matthews, B.B., Rey, A.J., Tabone, C.J., Crosby, M.A., Emmert, D.B., Falls, K., Goodman, J.L., Hu, Y., Ponting, L., Schroeder, A.J., Strelets, V.B., Thurmond, J., Zhou, P., Perrimon, N., Gelbart, S.R., Extavour, C., Broll, K., Zytkovicz, M., Brown, N.H., Attrill, H., Costa, M., Fexova, S., Jones, T., Larkin, A., Millburn, G.H., Staudt, N., Kaufman, T., Grumbling, G.B., Cripps, R., Werner-Washburne, M., Baker, P., 2017. FlyBase at 25: looking to the future. Nucleic Acids Res. 45, D663-D671.
    [20]
    Grigoriev, I., Splinter, D., Keijzer, N., Wulf, P.S., Demmers, J., Ohtsuka, T., Modesti, M., Maly, I. V., Grosveld, F., Hoogenraad, C.C., Akhmanova, A., 2007. Rab6 Regulates Transport and Targeting of Exocytotic Carriers. Dev. Cell 13, 305-314.
    [21]
    Guangming, G., Junhua, G., Chenchen, Z., Yang, M., Wei, X., 2020. Neurexin and Neuroligins Maintain the Balance of Ghost and Satellite Boutons at the Drosophila Neuromuscular Junction. Front. Neuroanat. 14, 19.
    [22]
    Harbour, M.E., Breusegem, S.Y.A., Antrobus, R., Freeman, C., Reid, E., Seaman, M.N.J., 2010. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J. Cell Sci. 123, 3703-3717.
    [23]
    Hierro, A., Rojas, A.L., Rojas, R., Murthy, N., Effantin, G., Kajava, A. V, Steven, A.C., Bonifacino, J.S., Hurley, J.H., Kajava, V.A., Steven, A.C., Bonifacino, J.S., Hurley, J.H., 2007. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063-1067.
    [24]
    Inoshita, T., Arano, T., Hosaka, Y., Meng, H.R., Umezaki, Y., Kosugi, S., Morimoto, T., Koike, M., Chang, H.Y., Imai, Y., Hattori, N., 2017. Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila. Hum. Mol. Genet. 26, 2933-2948.
    [25]
    Jia, D., Zhang, J.S., Li, F., Wang, J., Deng, Z., White, M.A., Osborne, D.G., Phillips-Krawczak, C., Gomez, T.S., Li, H., Singla, A., Burstein, E., Billadeau, D.D., Rosen, M.K., 2016. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nat. Commun. 7, 13305.
    [26]
    Jimenez-Orgaz, A., Kvainickas, A., Nagele, H., Denner, J., Eimer, S., Dengjel, J., Steinberg, F., 2018. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 37, 235.
    [27]
    Kim, N., Kim, S., Nahm, M., Kopke, D., Kim, J., Cho, E., Lee, M.-J., Lee, M., Kim, S.H., Broadie, K., Lee, S., 2019. BMP-dependent synaptic development requires Abi-Abl-Rac signaling of BMP receptor macropinocytosis. Nat. Commun. 10, 684.
    [28]
    Klinger, S., Siupka, P., Nielsen, M., 2015. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters. Membranes (Basel). 5, 288-306.
    [29]
    Koh, T.-W., Verstreken, P., Bellen, H.J., 2004. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193-205.
    [30]
    Koh, T.W., Korolchuk, V.I., Wairkar, Y.P., Jiao, W., Evergren, E., Pan, H., Zhou, Y., Venken, K.J.T., Shupliakov, O., Robinson, I.M., O’Kane, C.J., Bellen, H.J., 2007. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J. Cell Biol. 178, 309-322.
    [31]
    Koles, K., Yeh, A.R., Rodal, A.A., 2016. Tissue-specific tagging of endogenous loci in Drosophila melanogaster. Biol. Open 5, 83-89.
    [32]
    Korolchuk, V.I., Schutz, M.M., Gomez-Llorente, C., Rocha, J., Lansu, N.R., Collins, S.M., Wairkar, Y.P., Robinson, I.M., O’Kane, C.J., Schutz, M.M., Gomez-Llorente, C., Rocha, J., Lansu, N.R., Collins, S.M., Wairkar, Y.P., Robinson, I.M., O’Kane, C.J., 2007. Drosophila Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. J. Cell Sci. 120, 4367-4376.
    [33]
    Kvainickas, A., Nagele, H., Qi, W., Dokladal, L., Jimenez-Orgaz, A., Stehl, L., Gangurde, D., Zhao, Q., Hu, Z., Dengjel, J., de Virgilio, C., Baumeister, R., Steinberg, F., 2019. Retromer and TBC1D5 maintain late endosomal RAB7 domains to enable amino acid-induced mTORC1 signaling. J. Cell Biol. 218, 3019-3038.
    [34]
    Lamber, E.P., Siedenburg, A.C., Barr, F.A., 2019. Rab regulation by GEFs and GAPs during membrane traffic. Curr. Opin. Cell Biol. 59, 34-39.
    [35]
    Lee, T., Luo, L., 1999. Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis. Neuron 22, 451-461.
    [36]
    Lin, D.M., Goodman, C.S., 1994. Ectopic and increased expression of fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507-523.
    [37]
    Mahr, A., Aberle, H., 2006. The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr. Patterns 6, 299-309.
    [38]
    Marie, B., Sweeney, S.T., Poskanzer, K.E., Roos, J., Kelly, R.B., Davis, G.W., 2004. Dap160/Intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43, 207-219.
    [39]
    Marques, G., Bao, H., Haerry, T.E., Shimell, M.J., Duchek, P., Zhang, B., O’Connor, M.B., 2002. The Drosophila BMP Type II Receptor Wishful Thinking Regulates Neuromuscular Synapse Morphology and Function. Neuron 33, 529-543.
    [40]
    McCabe, B.D., Marques, G., Haghighi, A.P., Fetter, R.D., Crotty, M.L., Haerry, T.E., Goodman, C.S., O’Connor, M.B., 2003. The BMP Homolog Gbb Provides a Retrograde Signal that Regulates Synaptic Growth at the Drosophila Neuromuscular Junction. Neuron 39, 241-254.
    [41]
    More, K., Klinger, C.M., Barlow, L.D., Dacks, J.B., 2020. Evolution and Natural History of Membrane Trafficking in Eukaryotes. Curr. Biol. 30, R553-R564.
    [42]
    Mukhopadhyay, A., Pan, X., Lambright, D.G., Tissenbaum, H.A., 2007. An endocytic pathway as a target of tubby for regulation of fat storage. EMBO Rep. 8, 931-938.
    [43]
    Nahm, M., Lee, M.M.J., Parkinson, W., Lee, M.M.J., Kim, H., Kim, Y.J., Kim, S., Cho, Y.S., Min, B.M., Bae, Y.C., Broadie, K., Lee, S., 2013. Spartin Regulates Synaptic Growth and Neuronal Survival by Inhibiting BMP-Mediated Microtubule Stabilization. Neuron 77, 680-695.
    [44]
    O’Connor-Giles, K.M., Ganetzky, B., 2008. Satellite signaling at synapses. Fly (Austin). 2, 259-261.
    [45]
    O’Connor-Giles, K.M., Ho, L.L., Ganetzky, B., 2008. Nervous wreck interacts with thickveins and the endocytic machinery to attenuate retrograde BMP signaling during synaptic growth. Neuron 58, 507-518.
    [46]
    Pan, X., Eathiraj, S., Munson, M., Lambright, D.G., 2006. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442, 303-306.
    [47]
    Park, H.G., Kim, Y.D., Cho, E., Lu, T.-Y., Yao, C.-K., Lee, J., Lee, S., 2022. Vav independently regulates synaptic growth and plasticity through distinct actin-based processes. J. Cell Biol. 221.
    [48]
    Port, F., Chen, H.-M.M., Lee, T., Bullock, S.L., 2014. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 111, E2967-E2976.
    [49]
    Progida, C., Bakke, O., 2016. Bidirectional traffic between the Golgi and the endosomes - machineries and regulation. J. Cell Sci. 129, 3971-3982.
    [50]
    Rak, A., Fedorov, R., Alexandrov, K., Albert, S., Goody, R.S., Gallwitz, D., Scheidig, A.J., 2000. Crystal structure of the GAP domain of Gyp1p: First insights into interaction with Ypt/Rab proteins. EMBO J. 19, 5105-5113.
    [51]
    Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308.
    [52]
    Rivera-Molina, F.E., Novick, P.J., 2009. A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc. Natl. Acad. Sci. U. S. A. 106, 14408-14413.
    [53]
    Sarov, M., Barz, C., Jambor, H., Hein, M.Y., Schmied, C., Suchold, D., Stender, B., Janosch, S., K J, V.V., Krishnan, R.T., Krishnamoorthy, A., Ferreira, I.R.S., Ejsmont, R.K., Finkl, K., Hasse, S., Kampfer, P., Plewka, N., Vinis, E., Schloissnig, S., Knust, E., Hartenstein, V., Mann, M., Ramaswami, M., VijayRaghavan, K., Tomancak, P., Schnorrer, F., 2016. A genome-wide resource for the analysis of protein localisation in Drosophila. Elife 5, e12068.
    [54]
    Seaman, M.N.J., 2021. The Retromer Complex: From Genesis to Revelations. Trends Biochem. Sci. 46, 608-620.
    [55]
    Seaman, M.N.J., McCaffery, J.M., Emr, S.D., 1998. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665-681.
    [56]
    Seaman, M.N.J.J., Harbour, M.E., Tattersall, D., Read, E., Bright, N., 2009. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J. Cell Sci. 122, 2371-2382.
    [57]
    Seaman, M.N.J., Mukadam, A.S., Breusegem, S.Y., 2018. Inhibition of TBC1D5 activates Rab7a and can enhance the function of the retromer cargo-selective complex. J. Cell Sci.
    [58]
    Small, S.A., Kent, K., Pierce, A., Leung, C., Kang, M.S., Okada, H., Honig, L., Vonsattel, J.P., Kim, T.W., 2005. Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann. Neurol. 58, 909-919.
    [59]
    Sudhof, T.C., 2021. The cell biology of synapse formation. J. Cell Biol.
    [60]
    Sweeney, S.T., Davis, G.W., 2002. Unrestricted synaptic growth in spinster - A late endosomal protein implicated in TGF-β-mediated synaptic growth regulation. Neuron 36, 403-416.
    [61]
    Tong, C., Ohyama, T., Tien, A.C., Rajan, A., Haueter, C.M., Bellen, H.J., 2011. Rich Regulates Target Specificity of Photoreceptor Cells and N-Cadherin Trafficking in the Drosophila Visual System via Rab6. Neuron 71, 447-459.
    [62]
    Torroja, L., Packard, M., Gorczyca, M., White, K., Budnik, V., 1999. The Drosophila β-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J. Neurosci. 19, 7793-7803.
    [63]
    Uytterhoeven, V., Kuenen, S., Kasprowicz, J., Miskiewicz, K., Verstreken, P., 2011. Loss of Skywalker Reveals Synaptic Endosomes as Sorting Stations for Synaptic Vesicle Proteins. Cell 145, 117-132.
    [64]
    Vilarino-Guell, C., Wider, C., Ross, O.A., Dachsel, J.C., Kachergus, J.M., Lincoln, S.J., Soto-Ortolaza, A.I., Cobb, S.A., Wilhoite, G.J., Bacon, J.A., Behrouz, B., Melrose, H.L., Hentati, E., Puschmann, A., Evans, D.M., Conibear, E., Wasserman, W.W., Aasly, J.O., Burkhard, P.R., Djaldetti, R., Ghika, J., Hentati, F., Krygowska-Wajs, A., Lynch, T., Melamed, E., Rajput, A., Rajput, A.H., Solida, A., Wu, R.-M., Uitti, R.J., Wszolek, Z.K., Vingerhoets, F., Farrer, M.J., 2011. VPS35 Mutations in Parkinson Disease. Am. J. Hum. Genet. 89, 162-167.
    [65]
    Walsh, R.B., Dresselhaus, E.C., Becalska, A.N., Zunitch, M.J., Blanchette, C.R., Scalera, A.L., Lemos, T., Lee, S.M., Apiki, J., Wang, S., Isaac, B., Yeh, A., Koles, K., Rodal, A.A., 2021. Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. J. Cell Biol. 220.
    [66]
    Wang, J., Fedoseienko, A., Chen, B., Burstein, E., Jia, D., Billadeau, D.D., 2018. Endosomal receptor trafficking: Retromer and beyond. Traffic 19, 578-590.
    [67]
    Wang, S., Bellen, H.J., 2015. The retromer complex in development and disease. Development 142, 2392-2396.
    [68]
    Wang, X., Robert Shaw, W., H Tsang, H.T., Reid, E., O, C.J., Shaw, W.R., Tsang, H.T.H., Reid, E., O’Kane, C.J., 2007. Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nat. Neurosci. 10, 177-185.
    [69]
    Winther, A.M.E., Vorontsova, O., Rees, K.A., Nareoja, T., Sopova, E., Jiao, W., Shupliakov, O., 2015. An Endocytic Scaffolding Protein together with Synapsin Regulates Synaptic Vesicle Clustering in the Drosophila Neuromuscular Junction. J. Neurosci. 35, 14756-14770.
    [70]
    Xie, J., Heim, E.N., Crite, M., DiMaio, D., 2020. TBC1D5-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. Cell Rep. 31.
    [71]
    Ye, H., Ojelade, S.A., Li-Kroeger, D., Zuo, Z., Wang, L., Li, Y., Gu, J.Y.J., Tepass, U., Rodal, A.A., Bellen, H.J., Shulman, J.M., 2020. Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain. Elife 9, e51977.
    [72]
    Zhang, X., Rui, M., Gan, G., Huang, C., Yi, J., Lv, H., Xie, W., Colbran, R.J., 2017. Neuroligin 4 regulates synaptic growth via the bone morphogenetic protein (BMP) signaling pathway at the Drosophila neuromuscular junction. J. Biol. Chem. 292, 17991-18005.
    [73]
    Zito, K., Parnas, D., Fetter, R.D., Isacoff, E.Y., Goodman, C.S., 1999. Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22, 719-729.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (309) PDF downloads (39) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return