[1] |
Agris, P.F., Vendeix, F.A.,Graham, W.D., 2007. tRNA's wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366, 1-13.
|
[2] |
Alexandrov, A., Chernyakov, I., Gu, W., Hiley, S.L., Hughes, T.R., Grayhack, E.J.,Phizicky, E.M., 2006. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87-96.
|
[3] |
Arrondel, C., Missoury, S., Snoek, R., Patat, J., Menara, G., Collinet, B., Liger, D., Durand, D., Gribouval, O., Boyer, O., et al., 2019. Defects in t(6)a tRNA modification due to GON7 and YRDC mutations lead to galloway-mowat syndrome. Nat. Commun. 10, 3967.
|
[4] |
Bacusmo, J.M., Orsini, S.S., Hu, J., DeMott, M., Thiaville, P.C., Elfarash, A., Paulines, M.J., Rojas-Benitez, D., Meineke, B., Deutsch, C., et al., 2018. The t(6)a modification acts as a positive determinant for the anticodon nuclease PrrC, and is distinctively nonessential in streptococcus mutans. RNA Biol. 15, 508-517.
|
[5] |
Barraud, P., Gato, A., Heiss, M., Catala, M., Kellner, S.,Tisne, C., 2019. Time-resolved NMR monitoring of tRNA maturation. Nat. Commun. 10, 3373-3373.
|
[6] |
Beenstock, J., Ona, S.M., Porat, J., Orlicky, S., Wan, L.C.K.,Ceccarelli, D.F., 2020. A substrate binding model for the KEOPS tRNA modifying complex. Nat. Commun. 11, 6233.
|
[7] |
Behrens, A., Rodschinka, G.,Nedialkova, D.D., 2021. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol. Cell 81, 1802-1815.e1807.
|
[8] |
Bento-Abreu, A., Jager, G., Swinnen, B., Rue, L., Hendrickx, S., Jones, A., Staats, K.A., Taes, I., Eykens, C., Nonneman, A., et al., 2018. Elongator subunit 3 (ELP3) modifies ALS through tRNA modification. Hum. Mol. Genet. 27, 1276-1289.
|
[9] |
Bienz, M., Kubli, E., 1981. Wild-type tRNATyrG reads the TMV RNA stop codon, but Q base-modified tRNATyrQ does not. Nature 294, 188-190.
|
[10] |
Blanco, S., Bandiera, R., Popis, M., Hussain, S., Lombard, P., Aleksic, J., Sajini, A., Tanna, H., Cortes-Garrido, R., Gkatza, N., et al., 2016. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335-340.
|
[11] |
Blanco, S., Dietmann, S., Flores, J.V., Hussain, S., Kutter, C., Humphreys, P., Lukk, M., Lombard, P., Treps, L., Popis, M., et al., 2014. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 33, 2020-2039.
|
[12] |
Boccaletto, P., Stefaniak, F., Ray, A., Cappannini, A., Mukherjee, S., Purta, E., Kurkowska, M., Shirvanizadeh, N., Destefanis, E., Groza, P., et al., 2022. Modomics: A database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50, D231-D235.
|
[13] |
Brzezicha, B., Schmidt, M., Makalowska, I., Jarmolowski, A., Pienkowska, J., Szweykowska-Kulinska, Z., 2006. Identification of human tRNA: m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 34, 6034-6043.
|
[14] |
Cantara, W.A., Crain, P.F., Rozenski, J., McCloskey, J.A., Harris, K.A., Zhang, X., Vendeix, F.A., Fabris, D., Agris, P.F., 2011. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. 39, D195-201.
|
[15] |
Chan, C.T., Pang, Y.L., Deng, W., Babu, I.R., Dyavaiah, M., Begley, T.J.,Dedon, P.C., 2012. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937.
|
[16] |
Chan, P.P., Lowe, T.M., 2016. Gtrnadb 2.0: An expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184-D189.
|
[17] |
Chatterjee, K., Nostramo, R.T., Wan, Y., Hopper, A.K., 2018. tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 373-386.
|
[18] |
Chen, J., Li, K., Chen, J., Wang, X., Ling, R., Cheng, M., Chen, Z., Chen, F., He, Q., Li, S., et al., 2022. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun. (Lond) 42, 223-244.
|
[19] |
Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G.H., Peng, H., Zhang, X., Zhang, Y., et al., 2016. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397-400.
|
[20] |
Chen, Z., Zhu, W., Zhu, S., Sun, K., Liao, J., Liu, H., Dai, Z., Han, H., Ren, X., Yang, Q., et al., 2021. Mettl1 promotes hepatocarcinogenesis via m(7) g trna modification-dependent translation control. Clin. Transl. Med. 11, e661.
|
[21] |
Chernyakov, I., Whipple, J.M., Kotelawala, L., Grayhack, E.J., Phizicky, E.M., 2008. Degradation of several hypomodified mature tRNA species in saccharomyces cerevisiae is mediated by Met22 and the 5'-3' exonucleases Rat1 and Xrn1. Genes Dev. 22, 1369-1380.
|
[22] |
Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W., Green, P.J., Barton, G.J.,Hutvagner, G., 2009. Filtering of deep sequencing data reveals the existence of abundant dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147-2160.
|
[23] |
Cozen, A.E., Quartley, E., Holmes, A.D., Hrabeta-Robinson, E., Phizicky, E.M., Lowe, T.M., 2015. Arm-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879-884.
|
[24] |
Cui, J., Liu, Q., Sendinc, E., Shi, Y., Gregory, R.I., 2021a. Nucleotide resolution profiling of m3C RNA modification by HAC-seq. Nucleic Acids Res. 49, e27.
|
[25] |
Cui, Q., Yin, K., Zhang, X., Ye, P., Chen, X., Chao, J., Meng, H., Wei, J., Roeth, D., Li, L., et al., 2021b. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat. Cancer 2, 932-949.
|
[26] |
Dai, Z., Liu, H., Liao, J., Huang, C., Ren, X., Zhu, W., Zhu, S., Peng, B., Li, S., Lai, J., et al., 2021. N(7)-methylguanosine trna modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol. cell 81, 3339-3355.e3338.
|
[27] |
Delaunay, S., Rapino, F., Tharun, L., Zhou, Z., Heukamp, L., Termathe, M., Shostak, K., Klevernic, I., Florin, A., Desmecht, H., et al., 2016. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. J. Exp. Med. 213, 2503-2523.
|
[28] |
Deutscher, M.P., 1984. Processing of tRNA in prokaryotes and eukaryotes. CRC Crit. Rev. Biochem. 17, 45-71.
|
[29] |
Djumagulov, M., Demeshkina, N., Jenner, L., 2021. Accuracy mechanism of eukaryotic ribosome translocation. Nature 600, 543-546.
|
[30] |
Endres, L., Dedon, P.C., Begley, T.J., 2015. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA biol. 12, 603-614.
|
[31] |
Endres, L., Fasullo, M.,Rose, R., 2019. tRNA modification and cancer: potential for therapeutic prevention and intervention. Future Med. Chem. 11, 885-900.
|
[32] |
Fakruddin, M., Wei, F.Y., Suzuki, T., Asano, K., Kaieda, T., Omori, A., Izumi, R., Fujimura, A., Kaitsuka, T., Miyata, K., et al., 2018. Defective mitochondrial tRNA taurine modification activates global proteostress and leads to mitochondrial disease. Cell Rep. 22, 482-496.
|
[33] |
Flores, J.V., Cordero-Espinoza, L., Oeztuerk-Winder, F., Andersson-Rolf, A., Selmi, T., Blanco, S., Tailor, J., Dietmann, S., Frye, M., 2017. Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Reports 8, 112-124.
|
[34] |
Freude, K., Hoffmann, K., Jensen, L.R., Delatycki, M.B., des Portes, V., Moser, B., Hamel, B., van Bokhoven, H., Moraine, C., Fryns, J.P., et al., 2004. Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am. J. Hum. Genet. 75, 305-309.
|
[35] |
Gebetsberger, J., Wyss, L., Mleczko, A.M., Reuther, J., Polacek, N., 2017. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 14, 1364-1373.
|
[36] |
Ghezzi, D., Baruffini, E., Haack, T.B., Invernizzi, F., Melchionda, L., Dallabona, C., Strom, T.M., Parini, R., Burlina, A.B., Meitinger, T., et al., 2012. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am. J. Hum. Genet. 90, 1079-1087.
|
[37] |
Gkatza, N.A., Castro, C., Harvey, R.F., Heiss, M., 2019. Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biol. 17, e3000297.
|
[38] |
Goto-Ito, S., Ito, T., Kuratani, M., Bessho, Y.,Yokoyama, S., 2009. Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Nat. Struct. Mol. Biol. 16, 1109-1115.
|
[39] |
Guzzi, N., Ciesla, M., Ngoc, P.C.T., Lang, S., Arora, S., Dimitriou, M., Pimkova, K., Sommarin, M.N.E., Munita, R., Lubas, M., et al., 2018. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173, 1204-1216.e1226.
|
[40] |
Haag, S., Warda, A.S., Kretschmer, J., Gunnigmann, M.A., Hobartner, C., Bohnsack, M.T., 2015. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA 21, 1532-1543.
|
[41] |
Haeusler, R.A., Engelke, D.R., 2006. Spatial organization of transcription by RNA polymerase III. Nucleic Acids Res. 34, 4826-4836.
|
[42] |
Han, H., Yang, C., Ma, J., Zhang, S., Zheng, S., Ling, R., Sun, K., Guo, S., Huang, B., Liang, Y., et al., 2022. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat. Commun. 13, 1478.
|
[43] |
Hernandez-Alias, X., Benisty, H., Schaefer, M.H., Serrano, L., 2020. Translational efficiency across healthy and tumor tissues is proliferation-related. Mol. Syst. Biol. 16, e9275-e9275.
|
[44] |
Hopper, A.K., Shaheen, H.H., 2008. A decade of surprises for tRNA nuclear-cytoplasmic dynamics. Trends Cell biol. 18, 98-104.
|
[45] |
Huang, Z.X., Li, J., Xiong, Q.P., Li, H.,Wang, E.D., 2021. Position 34 of tRNA is a discriminative element for m5C38 modification by human DNMT2. Nucleic Acids Res. 49, 13045-13061.
|
[46] |
Ivanov, P., Emara, M.M., Villen, J., Gygi, S.P., Anderson, P., 2011. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613-623.
|
[47] |
Kahle, D., Wehmeyer, U., Char, S., Krupp, G., 1990. The methylation of one specific guanosine in a pre-tRNA prevents cleavage by RNase p and by the catalytic M1 RNA. Nucleic Acids Res. 18, 837-844.
|
[48] |
Keffer-Wilkes, L.C., Soon, E.F., Kothe, U., 2020. The methyltransferase TrmA facilitates tRNA folding through interaction with its RNA-binding domain. Nucleic Acids Res. 48, 7981-7990.
|
[49] |
Keffer-Wilkes, L.C., Veerareddygari, G.R., Kothe, U., 2016. RNA modification enzyme TruB is a tRNA chaperone. Proc. Natl. Acad. Sci. U. S. A. 113, 14306-14311.
|
[50] |
Kessler, A.C., Silveira d'Almeida, G., Alfonzo, J.D., 2018. The role of intracellular compartmentalization on tRNA processing and modification. RNA Biol. 15, 554-566.
|
[51] |
Khoddami, V., Yerra, A., Mosbruger, T.L., Fleming, A.M., Burrows, C.J.,Cairns, B.R., 2019. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc. Natl. Acad. Sci. U. S. A. 116, 6784-6789.
|
[52] |
Kirino, Y., Yasukawa, T., Ohta, S., Akira, S., Ishihara, K., Watanabe, K., Suzuki, T., 2004. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc. Natl. Acad. Sci. U. S. A. 101, 15070-15075.
|
[53] |
Klassen, R., Bruch, A., Schaffrath, R., 2017. Independent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications. RNA Biol. 14, 1252-1259.
|
[54] |
Kojic, M., Gawda, T., Gaik, M., Begg, A., Salerno-Kochan, A., Kurniawan, N.D., Jones, A., Drozdzyk, K., Koscielniak, A., Chramiec-Glabik, A., et al., 2021. Elp2 mutations perturb the epitranscriptome and lead to a complex neurodevelopmental phenotype. Nat. Commun. 12, 2678.
|
[55] |
Kopajtich, R., Nicholls, T.J., Rorbach, J., Metodiev, M.D., Freisinger, P., Mandel, H., Vanlander, A., Ghezzi, D., Carrozzo, R., Taylor, R.W., et al., 2014. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am. J. Hum. Genet. 95, 708-720.
|
[56] |
Kowalski, P.S., Rudra, A., Miao, L., Anderson, D.G., 2019. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710-728.
|
[57] |
Krutyholowa, R., Zakrzewski, K.,Glatt, S., 2019. Charging the code -tRNA modification complexes. Curr. Opin. Struct. Biol. 55, 138-146.
|
[58] |
Kurata, S., Weixlbaumer, A., Ohtsuki, T., Shimazaki, T., Wada, T., Kirino, Y., Takai, K., Watanabe, K., Ramakrishnan, V., Suzuki, T., 2008. Modified uridines with C5-methylene substituents at the first position of the trna anticodon stabilize U.G wobble pairing during decoding. J. Biol. Chem. 283, 18801-18811.
|
[59] |
Kutay, U., Lipowsky, G., Izaurralde, E., Bischoff, F.R., Schwarzmaier, P., Hartmann, E.,Gorlich, D., 1998. Identification of a tRNA-specific nuclear export receptor. Mol. cell 1, 359-369.
|
[60] |
Lee, Y.S., Shibata, Y., Malhotra, A.,Dutta, A., 2009. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639-2649.
|
[61] |
Lentini, J.M., Alsaif, H.S., Faqeih, E., Alkuraya, F.S., Fu, D., 2020. DALRD3 encodes a protein mutated in epileptic encephalopathy that targets arginine tRNAs for 3-methylcytosine modification. Nat. Commun. 11, 2510.
|
[62] |
Li, G.W., Xie, X.S., 2011. Central dogma at the single-molecule level in living cells. Nature 475, 308-315.
|
[63] |
Li, J., Wang, Y.-N., Xu, B.-S., Liu, Y.-P., Zhou, M., Long, T., Li, H., Dong, H., Nie, Y., Chen, P.R., et al., 2020. Intellectual disability-associated gene ftsj1 is responsible for 2'-O-methylation of specific trnas. EMBO Rep. 21, e50095-e50095.
|
[64] |
Li, J., Zhu, W.-Y., Yang, W.-Q., Li, C.-T., Liu, R.-J., 2021. The occurrence order and cross-talk of different trna modifications. Sci. China Life Sci. 64, 1423-1436.
|
[65] |
Li, S., Shi, X., Chen, M., Xu, N., Sun, D., Bai, R., Chen, H.,Ding, K., 2019. Angiogenin promotes colorectal cancer metastasis via tiRNA production. Int. J. Cancer 145, 1395-1407.
|
[66] |
Li, S., Xu, Z., Sheng, J., 2018. tRNA-derived small RNA: A novel regulatory small non-coding RNA. Genes 9, 246.
|
[67] |
Lin, H., Miyauchi, K., Harada, T., Okita, R., Takeshita, E., Komaki, H., Fujioka, K., Yagasaki, H., Goto, Y.I., Yanaka, K., et al., 2018a. Co(2)-sensitive tRNA modification associated with human mitochondrial disease. Nat. Commun. 9, 1875.
|
[68] |
Lin, S., Liu, Q., Jiang, Y.-Z., Gregory, R.I., 2019. Nucleotide resolution profiling of m(7)G tRNA modification by TRAC-seq. Nat. Protoc. 14, 3220-3242.
|
[69] |
Lin, S., Liu, Q., Lelyveld, V.S., Choe, J., Szostak, J.W., Gregory, R.I., 2018b. METTL1/WDR4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol. cell 71, 244-255.
|
[70] |
Liu, F., Clark, W., Luo, G., Wang, X., Fu, Y., Wei, J., Wang, X., Hao, Z., Dai, Q., Zheng, G., et al., 2016. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 816-828.e816.
|
[71] |
Loria, A., Pan, T., 1998. Recognition of the 5' leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from bacillus subtilis RNase P. Biochemistry 37, 10126-10133.
|
[72] |
Lueck, J.D., Yoon, J.S., Perales-Puchalt, A., 2019. Engineered transfer rnas for suppression of premature termination codons. Nat. Commun. 10, 822.
|
[73] |
Lyu, X., Yang, Q., Li, L., Dang, Y., Zhou, Z., Chen, S., Liu, Y., 2020. Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genet. 16, e1008836-e1008836.
|
[74] |
Ma, J., Han, H., Huang, Y., Yang, C., Zheng, S., Cai, T., Bi, J., Huang, X., Liu, R., Huang, L., et al., 2021. METTL1/WDR4-mediated m(7)G tRNAmodifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol. Ther. 29, 3422-3435.
|
[75] |
Macari, F., El-Houfi, Y., Boldina, G., Xu, H., Khoury-Hanna, S., Ollier, J., Yazdani, L., Zheng, G., Bieche, I., Legrand, N., et al., 2016. TRM6/61 connects PKCα with translational control through tRNAi(met) stabilization: Impact on tumorigenesis. Oncogene 35, 1785-1796.
|
[76] |
Mao, X.L., Li, Z.H., Huang, M.H., Wang, J.T., Zhou, J.B., Li, Q.R., Xu, H., Wang, X.J.,Zhou, X.L., 2021. Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Nucleic Acids Res. 49, 8309-8323.
|
[77] |
Marchand, V., Pichot, F., Thuring, K., Ayadi, L., Freund, I., Dalpke, A., Helm, M.,Motorin, Y., 2017. Next-generation sequencing-based RriboMethSeq protocol for analysis of tRNA 2'-O-methylation. Biomolecules 7, 13.
|
[78] |
Masuda, I., Takase, R., Matsubara, R., Paulines, M.J., Gamper, H., Limbach, P.A.,Hou, Y.M., 2018. Selective terminal methylation of a tRNA wobble base. Nucleic Acids Res. 46, e37.
|
[79] |
Megel, C., Morelle, G., Lalande, S., Duchene, A.-M., Small, I., Marechal-Drouard, L., 2015. Surveillance and cleavage of eukaryotic tRNAs. Int. J. Mol. Sci. 16, 1873-1893.
|
[80] |
Meng, F., Zhou, M., Xiao, Y., Mao, X., Zheng, J., Lin, J., Lin, T., Ye, Z., Cang, X., Fu, Y., et al., 2021. A deafness-associated tRNA mutation caused pleiotropic effects on the m1G37 modification, processing, stability and aminoacylation of tRNAIle and mitochondrial translation. Nucleic Acids Res. 49, 1075-1093.
|
[81] |
Morini, E., Gao, D., Montgomery, C.M., Salani, M., Mazzasette, C., Krussig, T.A., Swain, B., Dietrich, P., Narasimhan, J., Gabbeta, V., et al., 2019. ELP1 splicing correction reverses proprioceptive sensory loss in familial dysautonomia. Am. J. Hum. Genet. 104, 638-650.
|
[82] |
Nagayoshi, Y., Chujo, T., Hirata, S., Nakatsuka, H., Chen, C.W., Takakura, M., Miyauchi, K., Ikeuchi, Y., Carlyle, B.C., Kitchen, R.R., et al., 2021. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Sci. Adv. 7.
|
[83] |
Nakanishi, K., Bonnefond, L., Kimura, S., Suzuki, T., Ishitani, R.,Nureki, O., 2009. Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nature 461, 1144-1148.
|
[84] |
Nedialkova, D.D., Leidel, S.A., 2015. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161, 1606-1618.
|
[85] |
Ogawa, T., Tomita, K., Ueda, T., Watanabe, K., Uozumi, T.,Masaki, H., 1999. A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science 283, 2097-2100.
|
[86] |
Orellana, E.A., Liu, Q., Yankova, E., Pirouz, M., De Braekeleer, E., Zhang, W., Lim, J., Aspris, D., Sendinc, E., Garyfallos, D.A., et al., 2021. METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol. cell 81, 3323-3338 e3314.
|
[87] |
Osawa, S., 1960. The nucleotide composition of ribonucleic acids from subcellular components of yeast, escherichia coli and rat liver, with special reference to the occurrence of pseudouridylic acid in soluble ribonucleic acid. Biochim. Biophys. Acta. 42, 244-254.
|
[88] |
Ozanick, S.G., Wang, X., Costanzo, M., Brost, R.L., Boone, C.,Anderson, J.T., 2009. Rex1p deficiency leads to accumulation of precursor initiator tRNAMet and polyadenylation of substrate RNAs in saccharomyces cerevisiae. Nucleic Acids Res. 37, 298-308.
|
[89] |
Pan, Q., Han, T.,Li, G., 2021. Novel insights into the roles of RNA-derived small RNAs. RNA biol. 18, 2157-2167.
|
[90] |
Perche-Letuvee, P., Molle, T., Forouhar, F., Mulliez, E., Atta, M., 2014. Wybutosine biosynthesis: structural and mechanistic overview. RNA biol. 11, 1508-1518.
|
[91] |
Pereira, M., Ribeiro, D.R., Pinheiro, M.M., Ferreira, M., Kellner, S.,Soares, A.R., 2021. m5U54 tRNA hypomodification by lack of TRMT2A drives the generation of tRNA-derived small RNAs. Int. J. Mol. Sci. 22.
|
[92] |
Phizicky, E.M., Hopper, A.K., 2010. tRNA biology charges to the front. Genes Dev. 24, 1832-1860.
|
[93] |
Ranjan, N., Rodnina, M.V., 2017. Thio-modification of trna at the wobble position as regulator of the kinetics of decoding and translocation on the ribosome. J. Am. Chem. Soc. 139, 5857-5864.
|
[94] |
Rapino, F., Delaunay, S., Rambow, F., Zhou, Z., Tharun, L., De Tullio, P., Sin, O., Shostak, K., Schmitz, S., Piepers, J., et al., 2018. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature 558, 605-609.
|
[95] |
Rashad, S., Han, X., Sato, K., Mishima, E., 2020. The stress specific impact of ALKBH1 on tRNA cleavage and tiRNA generation. RNA Biol. 17, 1092-1103.
|
[96] |
Rezgui, V.A., Tyagi, K., Ranjan, N., Konevega, A.L., Mittelstaet, J., Rodnina, M.V., Peter, M.,Pedrioli, P.G., 2013. tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proc. Natl. Acad. Sci. U. S. A. 110, 12289-12294.
|
[97] |
Richter, U., Evans, M.E., Clark, W.C., Marttinen, P., Shoubridge, E.A., Suomalainen, A., Wredenberg, A., Wedell, A., Pan, T., Battersby, B.J., 2018. RNA modification landscape of the human mitochondrial tRNALys regulates protein synthesis. Nat. Commun. 9, 3966-3966.
|
[98] |
Rossello-Tortella, M., Llinas-Arias, P., Sakaguchi, Y., Miyauchi, K., Davalos, V., Setien, F., Calleja-Cervantes, M.E., Pineyro, D., Martinez-Gomez, J., Guil, S., et al., 2020. Epigenetic loss of the transfer RNA-modifying enzyme TYW2 induces ribosome frameshifts in colon cancer. Proc. Natl. Acad. Sci. U. S. A. 117, 20785-20793.
|
[99] |
Schaefer, K.P., Altman, S., Soll, D., 1973. Nucleotide modification in vitro of the precursor of transfer RNA of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 70, 3626-3630.
|
[100] |
Schaefer, M., Pollex, T., Hanna, K., Tuorto, F., Meusburger, M., Helm, M., Lyko, F., 2010. RNA methylation by DNMT2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590-1595.
|
[101] |
Sobala, A., Hutvagner, G., 2013. Small RNAs derived from the 5' end of tRNA can inhibit protein translation in human cells. RNA biol. 10, 553-563.
|
[102] |
Songe-Moeller, L., van den Born, E., Leihne, V., Vagboe, C.B., Kristoffersen, T., Krokan, H.E., Kirpekar, F., Falnes, P.OE., Klungland, A., 2010. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol. Cell. Biol. 30, 1814-1827.
|
[103] |
Su, Z., Monshaugen, I., Wilson, B., Wang, F., Klungland, A., Ougland, R., Dutta, A., 2022. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat. Commun. 13, 2165.
|
[104] |
Suzuki, T., 2021. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell. Biol. 22, 375-392.
|
[105] |
Suzuki, T., Nagao, A., Suzuki, T., 2011. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299-329.
|
[106] |
Szweykowska-Kulinska, Z., Senger, B., Keith, G., Fasiolo, F., Grosjean, H., 1994. Intron-dependent formation of pseudouridines in the anticodon of saccharomyces cerevisiae minor tRNAIle. EMBO J. 13, 4636-4644.
|
[107] |
Thiaville, P.C., Iwata-Reuyl, D., de Crecy-Lagard, V., 2014. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t(6)a), a universal modification of tRNA. RNA Biol. 11, 1529-1539.
|
[108] |
Thompson, M., Haeusler, R.A., Good, P.D., Engelke, D.R., 2003. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399-1401.
|
[109] |
Torres, A.G., Pineyro, D., Rodriguez-Escriba, M., Camacho, N., Reina, O., Saint-Leger, A., Filonava, L., Batlle, E., Ribas de Pouplana, L., 2015. Inosine modifications in human tRNAs are incorporated at the precursor trna level. Nucleic Acids Res. 43, 5145-5157.
|
[110] |
Torres, A.G., Rodriguez-Escriba, M., Marcet-Houben, M., Santos Vieira, H.G., Camacho, N., Catena, H., Murillo Recio, M., Rafels-Ybern, A., Reina, O., Torres, F.M., et al., 2021. Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res. 49, 7011-7034.
|
[111] |
Tsuboi, T., Yamazaki, R., Nobuta, R., Ikeuchi, K., Makino, S., Ohtaki, A., Suzuki, Y., Yoshihisa, T., Trotta, C., Inada, T., 2015. The tRNA splicing endonuclease complex cleaves the mitochondria-localized CBP1 mrna. J. Biol. Chem. 290, 16021-16030.
|
[112] |
Tukenmez, H., Xu, H., Esberg, A., Bystrom, A.S., 2015. The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes. Nucleic Acids Res 43, 9489-9499.
|
[113] |
Vendeix, F.A., Dziergowska, A., Gustilo, E.M., Graham, W.D., Sproat, B., Malkiewicz, A., Agris, P.F., 2008. Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding. Biochemistry 47, 6117-6129.
|
[114] |
Vilardo, E., Nachbagauer, C., Buzet, A., Taschner, A., Holzmann, J., Rossmanith, W., 2012. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase--extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 40, 11583-11593.
|
[115] |
Wang, X., Matuszek, Z., Huang, Y., Parisien, M., Dai, Q., Clark, W., Schwartz, M.H., Pan, T., 2018. Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA 24, 1305-1313.
|
[116] |
Wang, Y., Wang, J., Li, X., Xiong, X., Wang, J., Zhou, Z., Zhu, X., Gu, Y., Dominissini, D., He, L., et al., 2021. N(1)-methyladenosine methylation in trna drives liver tumourigenesis by regulating cholesterol metabolism. Nat. Commun. 12, 6314.
|
[117] |
Watkins, C.P., Zhang, W., 2022. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat. Commun. 13, 2491.
|
[118] |
Wei, F.Y., Zhou, B., Suzuki, T., Miyata, K., Ujihara, Y., Horiguchi, H., Takahashi, N., Xie, P., Michiue, H., Fujimura, A., et al., 2015. Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans. Cell Metab. 21, 428-442.
|
[119] |
Weng, Y., Li, C., Yang, T., Hu, B., Zhang, M., Guo, S., Xiao, H., Liang, X.J., Huang, Y., 2020. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534.
|
[120] |
Whipple, J.M., Lane, E.A., Chernyakov, I., D'Silva, S., Phizicky, E.M., 2011. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature trna. Genes Dev. 25, 1173-1184.
|
[121] |
Wilusz, J.E., Whipple, J.M., Phizicky, E.M., Sharp, P.A., 2011. tRNAs marked with ccacca are targeted for degradation. Science 334, 817-821.
|
[122] |
Xie, Y., Yao, L., Yu, X., Ruan, Y., Li, Z., Guo, J., 2020. Action mechanisms and research methods of trna-derived small RNAs. Signal Transduct Target Ther. 5, 109-109.
|
[123] |
Xu, S., Zhan, M., Jiang, C., He, M., Yang, L., Shen, H., Huang, S., Huang, X., Lin, R., Shi, Y., et al., 2019. Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat. Commun. 10, 5492.
|
[124] |
Yang, W.Q., Xiong, Q.P., Ge, J.Y., Li, H., Zhu, W.Y., Nie, Y., 2021. THUMPD3-TRMT112 is a m2G methyltransferase working on a broad range of tRNA substrates. Nucleic Acids Res. 49, 11900-11919.
|
[125] |
Yasukawa, T., Suzuki, T., Ishii, N., Ohta, S.,Watanabe, K., 2001. Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J. 20, 4794-4802.
|
[126] |
Ying, X., Liu, B., Yuan, Z., Huang, Y., Chen, C., Jiang, X., Zhang, H., Qi, D., Yang, S., Lin, S., et al., 2021. METTL1-m7G-EGFR/EFEMP1 axis promotes the bladder cancer development. Clin. Transl. Med. 11, e675.
|
[127] |
Zhang, Y., Zhang, X., 2018. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell. Biol. 20, 535-540.
|
[128] |
Zhao, F., Yu, C.H., Liu, Y., 2017. Codon usage regulates protein structure and function by affecting translation elongation speed in drosophila cells. Nucleic Acids Res. 45, 8484-8492.
|
[129] |
Zheng, G., Qin, Y., Clark, W.C., Dai, Q., Yi, C., He, C., Lambowitz, A.M., Pan, T., 2015. Efficient and quantitative high-throughput trna sequencing. Nat. Methods 12, 835-837.
|
[130] |
Zheng, S., Han, H., Lin, S., 2022. N6-methyladenosine (m6A) RNA modification in tumor immunity. Cancer Biol. Med. 19, 385-397.
|
[131] |
Zhou, M., Xue, L., Chen, Y., Li, H., He, Q., Wang, B., Meng, F., Wang, M., Guan, M.X., 2018. A hypertension-associated mitochondrial DNA mutation introduces an m1G37 modification into tRNAMet, altering its structure and function. J. Biol. Chem. 293, 1425-1438.
|